Delta Funktion vs Intergral < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:50 So 16.12.2018 | Autor: | nosche |
Aufgabe | Zeigen Sie, dass gilt
[mm] \integral_{-\infty}^{\infty}{\bruch{e^{ikx}}{2\pi} dk}=\delta(x)
[/mm]
indem Sie mittels Konvergenz erzeugendem Faktor [mm] \alpha [/mm] > 0 den Ausdruck [mm] \limes_{\alpha\rightarrow 0} \integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi} dk} [/mm] betrachten.
edit: (Definition von [mm] \delta(x) [/mm] )
[mm] \integral_{a}^{b}{f(x)\delta(x-x_{0}) dx}=\begin{cases} f(x_{0}), & \mbox{für } a
anschaulicher:
[mm] \delta(x)=\begin{cases} \infty, & \mbox{für } x=0 \\ 0, & \mbox{sonst } \end{cases} [/mm] |
[mm] \integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi}dk}= \bruch{1}{2\pi}\integral_{-\infty}^{\infty}{\bruch{e^{ikx}}{e^{\alpha*|k|}} dk}=\integral_{-\infty}^{\infty}{\bruch{cos(xk)+i*sin(xk)}{e^{\alpha*|k|}} dk}=\integral_{-\infty}^{\infty}{\bruch{cos(xk)}{e^{\alpha*|k|}} dk}+i*\integral_{-\infty}^{\infty}{\bruch{sin(xk)}{e^{\alpha*|k|}} dk}
[/mm]
der komplexe Anteil verschwindet, da sin(kx) punktsymmetrisch und der Nenner achsensymmetrisch.
Betrag loswerden:
[mm] \bruch{1}{2\pi}(\integral_{-\infty}^{0}{\bruch{e^{ikx}}{e^{-\alpha*k}} dk}+\integral_{0}^{\infty}{\bruch{e^{ikx}}{e^{\alpha*k}} dk})=\bruch{1}{2\pi}(\integral_{-\infty}^{0}{\bruch{1}{e^{-\alpha*k}}cos(xk) dk} +\integral_{0}^{\infty}{\bruch{1}{e^{\alpha*k}}cos(xk) dk})
[/mm]
hilft mir nicht wirklich weiter :-( Ich sehe keinen bedeutenten Anteil von a, weder für:fast alles Null noch für ein [mm] \infty. [/mm] Schon im Ansatz Murx?
|
|
|
|
Hallo,
> Zeigen Sie, dass gilt
> [mm]\integral_{-\infty}^{\infty}{\bruch{e^{ikx}}{2\pi} dk}=\delta(x)[/mm]
>
> indem Sie mittels Konvergenz erzeugendem Faktor [mm]\alpha[/mm] > 0
> den Ausdruck [mm]\limes_{\alpha\rightarrow 0} \integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi} dk}[/mm]
> betrachten.
>
> [mm]\limes_{\alpha\rightarrow 0} \integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi} dk}[/mm]
>
> [mm]\integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi}dk}= \bruch{1}{2\pi}\integral_{-\infty}^{\infty}{\bruch{e^{ikx}}{e^{\alpha*|k|}} dk}=\integral_{-\infty}^{\infty}{\bruch{cos(xk)+i*sin(xk)}{e^{\alpha*|k|}} dk}=\integral_{-\infty}^{\infty}{\bruch{cos(xk)}{e^{\alpha*|k|}} dk}+i*\integral_{-\infty}^{\infty}{\bruch{sin(xk)}{e^{\alpha*|k|}} dk}[/mm]
>
> der komplexe Anteil verschwindet, da sin(kx)
> punktsymmetrisch und der Nenner achsensymmetrisch.
> Betrag loswerden:
>
> [mm]\bruch{1}{2\pi}(\integral_{-\infty}^{0}{\bruch{e^{ikx}}{e^{-\alpha*k}} dk}+\integral_{0}^{\infty}{\bruch{e^{ikx}}{e^{\alpha*k}} dk})=\bruch{1}{2\pi}(\integral_{-\infty}^{0}{\bruch{1}{e^{-\alpha*k}}cos(xk) dk} +\integral_{0}^{\infty}{\bruch{1}{e^{\alpha*k}}cos(xk) dk})[/mm]
Deine Ansätze gehen schon in die richtige Richtung, allerdings ist der Übergang zu sin/cos überflüssig.
Die Frage ist nur, wo Du überhaupt hinmöchtest. Wie habt ihr [mm] $\delta(x)$ [/mm] definiert?
'Grob' würde ich wie Du zunächst Fallunterscheidung machen, aber dann direkt integrieren (muss man eigentlich mit Funktionentheorie begründen, aber ich kenne jetzt den Hintergrund der Fragestellung nicht - sieht eher nach Physik aus):
[mm] $\int_{-\infty}^{\infty}e^{ikx - \alpha |k|} [/mm] dk = [mm] \int_0^{\infty}e^{ikx-\alpha k} [/mm] dk + [mm] \int_{-\infty}^{0}e^{ikx+\alpha k} [/mm] dk = [mm] \big[\frac{1}{ix-\alpha}e^{(ix-\alpha)k}\big]_{k=0}^{k=\infty} [/mm] + [mm] \big[\frac{1}{ix+\alpha}e^{(ix+\alpha)k}\big]_{k=-\infty}^{k=0} [/mm] = ...$
Viele Grüße,
Stefan
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 22:13 Di 18.12.2018 | Autor: | nosche |
danke, Stefan für deine Rückmeldung und in der Tat handelt es sich um eine Aufgabe aus der theoretischen Physik. Mein Gedanke war, das es hier nur um algebraische Umformungen geht. In Zukunft werde ich Theo. Sachen in Physik unterbringen.
Nun zu dem [mm] e^{...} [/mm] Ansatz
$ [mm] \int_{-\infty}^{0}e^{ikx+\alpha k} [/mm] dk + [mm] \int_0^{\infty}e^{ikx-\alpha k} [/mm] dk = [mm] \big[\frac{1}{ix+\alpha}e^{(ix+\alpha)k}\big]_{k=-\infty}^{k=0} +\big[\frac{1}{ix-\alpha}e^{(ix-\alpha)k}\big]_{k=0}^{k=\infty} [/mm] = [mm] \frac{1}{ix+\alpha} [/mm] + [mm] \big[\frac{1}{ix-\alpha}e^{(ix-\alpha)k}\big]_{k=0}^{k=\infty} [/mm] $
nun ist (hoffentlich richtig?):
[mm] \limes_{k\rightarrow\infty} e^{(ix-\alpha)k}=\limes_{k\rightarrow\infty} \bruch{e^{ixk}}{e^{\alpha*k}}=\limes_{k\rightarrow\infty} \big(\bruch {e^{ix}}{e^{\alpha*k}}\big)^{k}=0
[/mm]
und damit
[mm] [e^{(ix-\alpha)k}\big]_{k=0}^{k=\infty}=-1
[/mm]
also
[mm] \int_{-\infty}^{0}e^{ikx+\alpha k} [/mm] dk + [mm] \int_0^{\infty}e^{ikx-\alpha k} [/mm] dk = [mm] \frac{1}{ix+\alpha}-\frac{1}{ix-\alpha} =\frac{ix-\alpha}{x^{2}+\alpha^{2}}-\frac{ix+\alpha}{x^{2}+\alpha^{2}}=\bruch{-2\alpha}{x^{2}+\alpha^{2}}
[/mm]
und
[mm] \limes_{\alpha\rightarrow 0} \integral_{-\infty}^{\infty}{\bruch{e^{ikx-\alpha*|k|}}{2\pi} dk}=\limes_{\alpha\rightarrow 0}\bruch{-2\alpha}{2*\pi(x^{2}+\alpha^{2})}=\limes_{\alpha\rightarrow 0}\bruch{-\alpha}{\pi(x^{2}+\alpha^{2})}= \bruch{1}{\pi*x^{2}}=\begin{cases} 0, & \mbox{für } x \not= 0 \\ \infty, & \mbox{sonst } \end{cases}
[/mm]
das ist die obige Definition von [mm] \delta(x)
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Fr 18.01.2019 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|