Orthonormalbasis zeigen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:43 Fr 21.12.2018 | Autor: | susannee |
Aufgabe | [mm] Gegeben\quad sei\quad das\quad Skalarprodukt\\ \left< { \cdot ,\cdot } \right>_{1}:R_{ \le 2 }[x]\times R_{ \le 2 }[x]\to R\quad mit\quad \left< p_{ 2 }x^{ 2 }+p_{ 1 }x+p_{ 0 },q_{ 2 }x^{ 2 }+q_{ 1 }x+q_{ 0 } \right> [/mm] _{ 1 [mm] }=2p_{ 2 }q_{ 2 }+p_{ 1 }q_{ 1 }+p_{ 0 }q_{ 1 }+p_{ 1 }q_{ 0 }+2p_{ 0 }q_{ 0 }
[/mm]
[mm] fuer\quad den\quad Vektorraum\quad R_{ \le 2 }[x]\quad und\quad die\quad Basis\\ \quad B=\left\{ { b }_{ 1 }:=\frac { 1 }{ \sqrt { 2 } } ,\quad { b }_{ 2 }:=\sqrt { 2 } (x-\frac { 1 }{ 2 } ),\quad { b }_{ 3 }:=\frac { 1 }{ \sqrt { 2 } } { x }^{ 2 }\quad \right\} \\ des\quad R_{ \le 2 }[x].\quad [/mm]
[mm] Zeige,\quad dass\quad B\quad eine\quad Orthonormalbasis\quad des\quad R_{ \le 2 }[x]\quad [/mm] ist. |
Hallo,
könnte meine Lösung stimmen?
Zu zeigen:
(i) [mm] \langle b_i,b_j \rangle [/mm] = 1 für i=j
(ii) [mm] \langle b_i,b_j \rangle [/mm] = 1 für i [mm] \neq [/mm] j
(i)
[mm] { \langle b_{ 1 },b_{ 1 }\rangle }_{ 1 }=2*0+0+0*\frac { 1 }{ \sqrt { 2 } } +\frac { 1 }{ \sqrt { 2 } } *0+2*(\frac { 1 }{ \sqrt { 2 } } *\frac { 1 }{ \sqrt { 2 } } )\quad =\quad 1 [/mm]
[mm]{ \langle b_{ 2 },b_{ 2 }\rangle }_{ 2 }=2*0+\sqrt { 2 } *\sqrt { 2 } +\sqrt { 2 } *(-\frac { 1 }{ \sqrt { 2 } } )+(-\frac { 1 }{ \sqrt { 2 } } )*\sqrt { 2 } +\quad 2(-\frac { 1 }{ \sqrt { 2 } } )*(-\frac { 1 }{ \sqrt { 2 } } )\quad =2-1-1+1\quad =\quad 1 [/mm]
[mm]{ \langle b_{ 2 },b_{ 2 }\rangle }_{ 3 }=2*\frac { 1 }{ \sqrt { 2 } } *\frac { 1 }{ \sqrt { 2 } } \quad =\quad 1 [/mm]
(ii) Hierbei fällt mir leider keine sinnvolle Begründung ein, aber man hätte hier ja 6 Kombinationen zu berechnen, allerdings muss man diese nicht alle einzeln betrachten, denn 4 davon sind trivialerweise Null. Und dass sind die, mit dem Basiselement [mm] b_3, [/mm] denn es hat keine Gemeinsamkeiten mit den anderen Basiselementen und eine Multiplikation nach Abbildungsvorschrift würde in jeden Fall Null ergeben.
Ist dies verständlich? Kann man das besser Ausdrücken?
Nun betrachte ich die beiden interessanten Fälle, bzw nur einen davon, denn laut Definition des Skalarproduktes liegt eine Symmetrie vor und es kommt dasselbe Ergebnis raus, also betrachte ich nur
[mm] \langle b_{ 1 },b_{ 2 }\rangle _{ 3 }[/mm]
denn es es gilt ja
[mm] \langle b_{ 1 },b_{ 2 }\rangle _{ 3 } = \langle b_{ 2 },b_{ 1 }\rangle _{ 4 }[/mm]
[mm] \langle b_{ 1 },b_{ 2 }\rangle _{ 3 }=2*0+\sqrt { 2 } *0+\sqrt { 2 } *\frac { 1 }{ \sqrt { 2 } } +(-\frac { 1 }{ \sqrt { 2 } } )*0+2*\frac { 1 }{ \sqrt { 2 } } *(-\frac { 1 }{ \sqrt { 2 } } )\quad =\quad 1-1\quad =\quad 0[/mm]
Und tata, aus (i bis ii) folgt, dass B eine Orthonormalbasis ist?
Liebe Grüße
Susanne
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 05:39 Sa 22.12.2018 | Autor: | fred97 |
> [mm]Gegeben\quad sei\quad das\quad Skalarprodukt\\ \left< { \cdot ,\cdot } \right>[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> _{ 1 [mm]}:R_{ \le 2 }[x]\times R_{ \le 2 }[x]\to R\quad mit\quad \left< p_{ 2 }x^{ 2 }+p_{ 1 }x+p_{ 0 },q_{ 2 }x^{ 2 }+q_{ 1 }x+q_{ 0 } \right>[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> _{ 1 [mm]}=2p_{ 2 }q_{ 2 }+p_{ 1 }q_{ 1 }+p_{ 0 }q_{ 1 }+p_{ 1 }q_{ 0 }+2p_{ 0 }q_{ 0 }\\ für\quad den\quad Vektorraum\quad R_{ \le 2 }[x]\quad und\quad die\quad Basis\\ \quad B=\left\{ { b }_{ 1 }:=\frac { 1 }{ \sqrt { 2 } } ,\quad { b }_{ 2 }:=\sqrt { 2 } (x-\frac { 1 }{ 2 } ),\quad { b }_{ 3 }:=\frac { 1 }{ \sqrt { 2 } } { x }^{ 2 }\quad \right\} \\ des\quad R_{ \le 2 }[x].\quad Zeige,\quad dass\quad B\quad eine\quad Orthonormalbasis\quad des\quad R_{ \le 2 }[x]\quad[/mm]
> ist.
>
> Hallo,
> könnte meine Lösung stimmen?
>
> Zu zeigen:
>
> (i) [mm]\langle b_i,b_j \rangle[/mm] = 1 für i=j
>
> (ii) [mm]\langle b_i,b_j \rangle[/mm] = 1 für i [mm]\neq[/mm] j
>
>
> (i)
> [mm]{ \langle b_{ 1 },b_{ 1 }\rangle }_{ 1 }=2*0+0+0*\frac { 1 }{ \sqrt { 2 } } +\frac { 1 }{ \sqrt { 2 } } *0+2*(\frac { 1 }{ \sqrt { 2 } } *\frac { 1 }{ \sqrt { 2 } } )\quad =\quad 1[/mm]
>
> [mm]{ \langle b_{ 2 },b_{ 2 }\rangle }_{ 2 }=2*0+\sqrt { 2 } *\sqrt { 2 } +\sqrt { 2 } *(-\frac { 1 }{ \sqrt { 2 } } )+(-\frac { 1 }{ \sqrt { 2 } } )*\sqrt { 2 } +\quad 2(-\frac { 1 }{ \sqrt { 2 } } )*(-\frac { 1 }{ \sqrt { 2 } } )\quad =2-1-1+1\quad =\quad 1[/mm]
>
> [mm]{ \langle b_{ 2 },b_{ 2 }\rangle }_{ 3 }=2*\frac { 1 }{ \sqrt { 2 } } *\frac { 1 }{ \sqrt { 2 } } \quad =\quad 1[/mm]
Was sind das für Indices an den Skalarprodukten? ?
>
>
> (ii) Hierbei fällt mir leider keine sinnvolle Begründung
> ein, aber man hätte hier ja 6 Kombinationen zu berechnen,
Na ja, aus Symmetriegründen nur 3.
> allerdings muss man diese nicht alle einzeln betrachten,
> denn 4 davon sind trivialerweise Null. Und dass sind die,
> mit dem Basiselement [mm]b_3,[/mm] denn es hat keine Gemeinsamkeiten
> mit den anderen Basiselementen und eine Multiplikation nach
> Abbildungsvorschrift würde in jeden Fall Null ergeben.
> Ist dies verständlich?
ja
> Kann man das besser Ausdrücken?
Statt so vieler Worte, hättest Du die beiden Skalarprodukte auch ausrechnen können.
>
> Nun betrachte ich die beiden interessanten Fälle, bzw nur
> einen davon, denn laut Definition des Skalarproduktes liegt
> eine Symmetrie vor und es kommt dasselbe Ergebnis raus,
> also betrachte ich nur
> [mm]\langle b_{ 1 },b_{ 2 }\rangle _{ 3 }[/mm]
Was soll der Index?
> denn es es gilt ja
> [mm]\langle b_{ 1 },b_{ 2 }\rangle _{ 3 } = \langle b_{ 2 },b_{ 1 }\rangle _{ 4 }[/mm]
>
> [mm]\langle b_{ 1 },b_{ 2 }\rangle _{ 3 }=2*0+\sqrt { 2 } *0+\sqrt { 2 } *\frac { 1 }{ \sqrt { 2 } } +(-\frac { 1 }{ \sqrt { 2 } } )*0+2*\frac { 1 }{ \sqrt { 2 } } *(-\frac { 1 }{ \sqrt { 2 } } )\quad =\quad 1-1\quad =\quad 0[/mm]
>
> Und tata, aus (i bis ii) folgt, dass B eine
> Orthonormalbasis ist?
ja, Du hast alles richtig. Aber was die Indices sollen, ist mir ein Rätsel
>
> Liebe Grüße
> Susanne
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|