www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Poynting-Vektor
Poynting-Vektor < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poynting-Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 So 07.07.2019
Autor: nosche

Aufgabe
Ein Kondensator mit kreisförmigen Flächen A vom Radius [mm] r_0 [/mm] und Plattenabstand d wird zum Erreichen der gewünschten Spannung U mit einem konstanten Strom I aufgeladen.
a) Bestimmen Sie die Felder [mm] \vec{E}(r,t) [/mm] und [mm] \vec{H}(r,t) [/mm] innerhalb des Kondensators als Funktion der Zeit t und dem Abstand r von der Symmetrieachse. Berechnen Sie damit Betrag und Richtung des Poynting-Vektors [mm] \vec{S}(r,t) [/mm] für r [mm] \le r_0. [/mm]
b) Berechnen Sie die momentane Gesamtenergie W(t) des Kondensators allein mittels der in den Kondensator hineinfließenden Energiestromdichte [mm] S_0(t) [/mm] = [mm] |\vec{S}(r_0,t)|. [/mm] Drücken Sie das Ergebnis als Funktion der Kapazität C und der erreichten Spannung U(t) aus.

Kapazität des Kondendators: [mm] C=\epsilon_0 \bruch{A}{d} [/mm] = [mm] \epsilon_0 \bruch{\pi r^2_0}{d} [/mm]
für [mm] \vec{E} [/mm] gelte (um irgendwas über [mm] \vec{E} [/mm] zu sagen): [mm] \vec{E} [/mm] = [mm] \bruch{U(t)}{d}\vec{e}_z [/mm]
hier stock ich schon: Wie berechne ich U(t) bei konstantem Ladestrom I?

        
Bezug
Poynting-Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 07.07.2019
Autor: HJKweseleit

Kondensatorgleichung: "Kuh gleich Kuh", oder besser Q = CU.

Bezug
                
Bezug
Poynting-Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Di 09.07.2019
Autor: nosche

danke für die Mittteilung.
Q=CU überseh ich immer wieder
Leider komm ich trotzdem im Moment nicht wirklich weiter.

Da der Strom konstant ist nimmt gemäß [mm] I=\bruch{dQ}{dt} [/mm] die Ladung auf dem Kondensator linear mit der Zeit zu und damit auch die Spannung zwischen den Platten
Ich muß das erst noch mal durchgrübeln

Bezug
                        
Bezug
Poynting-Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Mi 10.07.2019
Autor: HJKweseleit

Überlege dir, was der konstante Ladestrom allgemein für die einzelnen Größen bedeutet: Wie verändern sich Q, E, S, ... mit der Zeit?

Berechne das dann für einen beliebigen, aber festen Ladezustand Q = I*t.

Bezug
                                
Bezug
Poynting-Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:28 Do 11.07.2019
Autor: nosche

vielen Dank für den weiteren Hinweis
mit a) bin ich im Wesentlichen durch, ich wills mir noch mal in Ruhe anschauen, bevor ich es hier rein setze.

Nochmals herzlichen Dank für die Unterstützung


Bezug
                                        
Bezug
Poynting-Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Do 11.07.2019
Autor: nosche

[mm] \vec{E} [/mm] = U/d [mm] *\vec{e_z} [/mm]
U=Q/C
[mm] C=\varepsilon_0 \bruch{A}{d} =\varepsilon_0 \bruch{\pi r^2}{d} [/mm]
wegen [mm] I=\bruch{dQ}{dt} [/mm] = const [mm] \Rightarrow [/mm] Q=It
[mm] \vec{E} [/mm] = [mm] \bruch{It}{Cd} \vec{e_z} [/mm] = [mm] \bruch{Itd}{\varepsilon_0 \pi r^2 d} \vec{e_z} [/mm] = [mm] \bruch{It}{\varepsilon_0 \pi r^2} \vec{e_z} [/mm] = [mm] \vec{E}(r,t) [/mm]

an das B-Feld komme ich über den Verschiebungsstrom. Hier gilt:
rot [mm] \vec{B} [/mm] = [mm] \mu_0 \vev{j} [/mm] + [mm] \mu_0 \varepsilon_0 \bruch{\delta}{\delta t} \vec{E} [/mm]
zwischen den Kondensatorplatten fließt kein Strom [mm] \to \vec{j}=0 [/mm]
[mm] rot\vec{B} [/mm] = [mm] \mu_0 \varepsilon_0 \bruch{\delta}{\delta t} \vec{E}|\integral_{A}^{}{ d\vec{A}} [/mm]
[mm] \integral_{A}^{}{rot \vec{B} d\vec{A}}=\mu_0 \varepsilon_0 \bruch{\delta}{\delta t} \integral_{A}^{}{\vec{E} d\vec{A}} [/mm]
Integralsatz von Stokes
[mm] \integral_{Rd(A)}^{}{\vec{B} d\vec{s}}=\mu_0 \varepsilon_0 \bruch{\delta}{\delta t} \integral_{A}^{}{\vec{E} d\vec{A}} [/mm]
weil [mm] \vec{B} \parallel d\vec{s} [/mm] und [mm] \vec{E} \parallel d\vec{A}: [/mm]
[mm] 2\pi*r_0*B=\mu_0 \varepsilon_0 \bruch{\delta}{\delta t} \bruch{It}{\varepsilon_0 \pi r^2} *\pi r^2_0 =\bruch{\mu_0Ir_0}{r^2} [/mm]
[mm] B=\bruch{\mu_0I}{2\pi*r^2}r_0 [/mm] ; weil unabhängig von der Zeit, vermute ich noch einen Fehler
Das B-Feld ist kreisförmig (Zylinderkoordinaten): [mm] \vec{B} [/mm] = [mm] \bruch{\mu_0Ir_0}{2\pi*r^2}\vec{e}_{\phi} [/mm]
[mm] \vec{S}:=\vec{E}\times \vec{B} [/mm] = [mm] E*B*\vec{e}_z\times\vec{e}_{\phi}=-\bruch{It}{\varepsilon_0 \pi r^2}\bruch{\mu_0Ir_0}{2\pi*r^2} \vec{e}_r=-\bruch{\mu_0 I^2tr_0}{2\varepsilon_0 \pi^2 r^4}\vec{e}_r [/mm]

So, ohne Starthilfe wär ich nicht so weit gekommen. Nochmals: Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]