3-Term-Relation, Beweis, allg < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:48 Mi 06.01.2016 | Autor: | sissile |
Aufgabe | Ich habe ein Problem beim Beweis folgenden Satzes:
Der Satz sowie der Beweis war in der Vorlesung sehr durcheinander aufgeschrieben/präsentiert - habe versucht es in eine ordentliche Form zu bringen (kann natürlich fehlerbehaftet sein)
Sei V=C[a,b] der Hilbertraum mit Skalarprodukt <f,g> = [mm] \int_a^b [/mm] f(x) g(x) [mm] \omega(x) [/mm] dx mit der positiven und integrierbaren Gewichtsfunktion [mm] \omega(x) [/mm] auf (a,b)
Seien [mm] \{1,x,x^2,...\} [/mm] eine Basis der Polynome.
[mm] \{p_0,p_1,...\} [/mm] werden durch Gramm-Schmidt-Verfahren erzeugt und jeweils nommiert.
Es gilt die dreistufige Rekursionsformel
[mm] p_{n+1} [/mm] = [mm] \gamma_{n+1} [/mm] (x [mm] p_n(x)) [/mm] - [mm] \alpha_{n+1} p_n [/mm] (x) - [mm] \beta_{n+1} p_{n-1} [/mm] (x)
für [mm] \gamma_{n+1}, \alpha_{n+1}, \beta_{n+1} \in \mathbb{R} [/mm] geeignet. |
Beweis:
Behauptung 1: [mm] grad(p_n)=n
[/mm]
Induktionsanfang [mm] p_0= \frac{1}{\sqrt{\int_a^b \omega(x) dx}} [/mm] hat Grad 0
Induktionsschritt:
der nicht normierte Term von Gramm-Schmidt: [mm] \tilde{p_n}= x^n [/mm] - [mm] \sum_{i=1}^{n-1} p_i
[/mm]
[mm] \in \mathbb{K}
[/mm]
[mm] grad(p_i)=i [/mm] nach induktionsannahme
[mm] \Rightarrow grad(\tilde{p_n})=n \Rightarrow grad(p_n)=n
[/mm]
[mm] p_{n+1} [/mm] - [mm] \gamma_{n+1} [/mm] x [mm] p_n(x) [/mm] hat Grad n
Denn [mm] grad(p_{n+1})=n+1 [/mm] und [mm] \gamma_{n+1} [/mm] der Leitkoeffizient von [mm] p_{n+1}.
[/mm]
Also kann [mm] p_{n+1} [/mm] - [mm] \gamma_{n+1} [/mm] x [mm] p_n(x) [/mm] als Linearkombination von [mm] \{p_0,..,p_n\} [/mm] geschrieben werden:
[mm] p_{n+1} [/mm] - [mm] \gamma_{n+1} [/mm] x [mm] p_n(x) [/mm] = - [mm] \alpha_{n+1} p_n(x) [/mm] - [mm] \beta_{n+1} p_{n-1} [/mm] (x) - [mm] \sum_{i=0}^{n-2} c_i p_i(x)
[/mm]
Für [mm] i_0=0,..,n-2 [/mm] gilt:
[mm] 0= [/mm] = [mm] \gamma_{n+1} \int_a^b [/mm] x [mm] p_n(x) p_{i_0} [/mm] (x) [mm] \omega(x) [/mm] dx - [mm] \alpha_{n+1} \int_a^b p_n(x) p_{i_0} [/mm] (x) [mm] \omega(x) [/mm] dx- [mm] \beta_{n+1} \int_a^b p_{n-1}(x) p_{i_0} [/mm] (x) [mm] \omega(x) [/mm] dx - [mm] \sum_{i=0}^{n-2} c_i \int_a^b [/mm] x [mm] p_i(x) p_{i_0} (x)\omega(x)dx [/mm]
[mm] =\gamma_{n+1} \int_a^b [/mm] x [mm] p_n(x) p_{i_0} [/mm] (x) [mm] \omega(x) [/mm] dx - [mm] c_{i_0} \delta_{i,i_0}
[/mm]
Nun verstehe ich nicht warum [mm] \gamma_{n+1} \int_a^b [/mm] x [mm] p_n(x) p_{i_0} [/mm] (x) [mm] \omega(x) [/mm] dx Null sein sollte um [mm] c_{i_0}=0 [/mm] zu folgern??
Hängt das damit zusammen, dass der Leitkoeffizient von [mm] \gamma_{n+1} [/mm] x [mm] p_n(x) [/mm] derselbe ist wie von [mm] p_{n+1}?
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:39 Do 07.01.2016 | Autor: | hippias |
[mm] $p_{n}$ [/mm] ist orthogonal zu allen Polynomen vom Grad $<n$; [mm] $xp_{i_{0}}$ [/mm] ist ein solches.
|
|
|
|