www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung von ln-Funktionen
Ableitung von ln-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von ln-Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:07 Mo 22.03.2010
Autor: SunshineABC

Aufgabe
Weise nach, dass F(t)=17.500*ln(2*e^(0,2*t)+33) eine Stammfunktion der Funktion [mm] f(t)=\bruch{3.500}{1+16,5*e^(-0,2*t)} [/mm] ist!

Hallo,
also ich denke es gibt zwei Möglichkeiten wie man diese Aufgabe lösen kann:
1. Man berechnet die Stammfunktion von f(t) und schaut ob sie identisch mit F(t) ist
oder
2. Man versucht nachzuweisen, dass F(t) eine Stammfunktion ist, indem man zeigt, dass F'(t)=f(t) gilt, wie es für Stammfunktionen üblich ist.

Allerdings habe ich bei beiden Verfahren meine Schwierigkeiten, ich habe mich für den 2ten Weg entschieden und habe aufgeschrieben, dass
F'(t)= 17.500*1/(2*e^(0,2*t)+33)
Ist das richtig?

Danach habe ich die 2 ausgeklammert und weggekürzt, sodass ich nun F'(t)=8750/(e^(0,2*t)+16,5) bekommen habe.
Selbst, wenn das bisher richtig sein sollte, habe ich keine Ahnung wie ich jetzt zeigen kann, dass das das gleiche ist wie f(t).

Bitte helft mir! Danke im Voraus! :)
LG

        
Bezug
Ableitung von ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 22.03.2010
Autor: Al-Chwarizmi


> Weise nach, dass F(t)=17.500*ln(2*e^(0,2*t)+33) eine
> Stammfunktion der Funktion
> [mm]f(t)=\bruch{3.500}{1+16,5*e^(-0,2*t)}[/mm] ist!
>  Hallo,
>  also ich denke es gibt zwei Möglichkeiten wie man diese
> Aufgabe lösen kann:
>  1. Man berechnet die Stammfunktion von f(t) und schaut ob
> sie identisch mit F(t) ist
>  oder
>  2. Man versucht nachzuweisen, dass F(t) eine Stammfunktion
> ist, indem man zeigt, dass F'(t)=f(t) gilt, wie es für
> Stammfunktionen üblich ist.

     natürlich ist der zweite Weg vorzuziehen (einfacher)
  

> Allerdings habe ich bei beiden Verfahren meine
> Schwierigkeiten, ich habe mich für den 2ten Weg
> entschieden und habe aufgeschrieben, dass
>  F'(t)= 17.500*1/(2*e^(0,2*t)+33)
>  Ist das richtig?

Nein, du hast vergessen, die Kettenregel anzuwenden.
Die Ableitung von  [mm] e^{0,2*t} [/mm]  nach t ist  $\ [mm] e^{0,2*t}\red{*\ 0,2}$ [/mm]

Übrigens stimmt noch etwas mit den Vorzeichen der
Exponenten nicht. Ist es nun  $\ 0.2*t$  oder  $\ -0.2*t$  ??


LG    Al-Chw.

Bezug
                
Bezug
Ableitung von ln-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 Mo 22.03.2010
Autor: SunshineABC

In der Aufgabe steht bei F(x) -0,2 und bei der anderen Funktion f(x) +0,2.


Bezug
                
Bezug
Ableitung von ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Mo 22.03.2010
Autor: SunshineABC

Ich versteh aber auch trotzdem nicht, wie ich die beiden Funktionen gleich bekommen kann, um eben nachzuweisen, dass F(t) die Stammfunktion ist.

Bezug
                        
Bezug
Ableitung von ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 22.03.2010
Autor: Rino

Was bekommst du denn nach dem Anwenden der Kettenregel für eine Ableitung von $F$ heraus?

Bezug
                                
Bezug
Ableitung von ln-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Mo 22.03.2010
Autor: SunshineABC

F'(t)= 17500 * 1/ (5*2*e^(0,2*t)+33)


Bezug
        
Bezug
Ableitung von ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Di 23.03.2010
Autor: fred97

Es ist

$F'(t) = [mm] \bruch{17.500}{2e^{0,2t}+33}*2*0,2*e^{0,2t}= \bruch{7000*e^{0,2t}}{2e^{0,2t}+33}= \bruch{3500*e^{0,2t}}{e^{0,2t}+16,5}$ [/mm]

Wir teilen Zähler und Nenner durch [mm] e^{0,2t} [/mm] und erhalten:

$F'(t)= [mm] \bruch{3500}{16,5*e^{-0,2t}+1}=f(t)$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]