Allgemeine Lage < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:29 Mi 02.11.2011 | Autor: | valoo |
Aufgabe | Seien K ein Körper und [mm] P_{1},...,P_{m+2}\in\IP_{K}^{m} [/mm] sowie [mm] Q_{1},...,Q_{m+2}\in\IP_{K}^{m} [/mm] in allgemeiner Lage, das heißt je k unter ihnen (den [mm] P_{i} [/mm] bzw. [mm] Q_{i}) [/mm] spannen einen min(k-1, m)-dimensionalen projektiven Unterraum auf. Zeigen Sie, dass [mm] P_{1},...,P_{m+2} [/mm] und [mm] Q_{1},...,Q_{m+2} [/mm] projektiv äquivalent sind, das heißt, es gibt eine invertierbare [mm] (m+1)\times(m+1) [/mm] Matrix M mit [mm] Q_{i}=M*P_{i} \forall [/mm] i |
Hallo!
Also klar ist (da jeweils m+1 Basisvektoren der [mm] P_{i} [/mm] bzw. der [mm] Q_{i} [/mm] linear unabhängig sind), dass es eine Matrix M gibt mit [mm] Q_{i}=M*P_{i} \forall i\le [/mm] m+1
Jetzt frag ich mich nur, warum auch [mm] Q_{m+2}=M*P_{m+2} [/mm] ist oder sein sollte....Das scheint es nämlich nicht zu sein, denn für ein einfaches Beispiel, dass ich mir ausgedacht hab (m=2) ist dies nicht der Fall, denn [mm] M*v\not=w
[/mm]
(v Basivsvektor von [mm] P_{m+2}, [/mm] w Basisvektor von [mm] Q_{m+2}) [/mm]
Es ist sogar so, dass M*v nicht einmal ein Vielfaches von w ist, also scheint mein Ansatz nicht zu funktionieren oder mein Beispiel ist falsch...Mhh?
Hab für die P die Standardbasisvektoren und die Summe dieser genommen und für Q [mm] \vektor{1 \\ 2 \\ 0}, \vektor{0 \\ 2 \\ 1}, \vektor{2 \\ 0 \\ 1} [/mm] und [mm] \vektor{2 \\ 3 \\ 1} [/mm] Die sind doch wohl in allgemeiner Lage?!
|
|
|
|
Hallo valoo!
> Seien K ein Körper und [mm]P_{1},...,P_{m+2}\in\IP_{K}^{m}[/mm]
> sowie [mm]Q_{1},...,Q_{m+2}\in\IP_{K}^{m}[/mm] in allgemeiner Lage,
> das heißt je k unter ihnen (den [mm]P_{i}[/mm] bzw. [mm]Q_{i})[/mm] spannen
> einen min(k-1, m)-dimensionalen projektiven Unterraum auf.
> Zeigen Sie, dass [mm]P_{1},...,P_{m+2}[/mm] und [mm]Q_{1},...,Q_{m+2}[/mm]
> projektiv äquivalent sind, das heißt, es gibt eine
> invertierbare [mm](m+1)\times(m+1)[/mm] Matrix M mit [mm]Q_{i}=M*P_{i} \forall[/mm]
> i
> Hallo!
>
> Also klar ist (da jeweils m+1 Basisvektoren der [mm]P_{i}[/mm] bzw.
> der [mm]Q_{i}[/mm] linear unabhängig sind), dass es eine Matrix M
> gibt mit [mm]Q_{i}=M*P_{i} \forall i\le[/mm] m+1
> Jetzt frag ich mich nur, warum auch [mm]Q_{m+2}=M*P_{m+2}[/mm] ist
> oder sein sollte....Das scheint es nämlich nicht zu sein,
> denn für ein einfaches Beispiel, dass ich mir ausgedacht
> hab (m=2) ist dies nicht der Fall, denn [mm]M*v\not=w[/mm]
> (v Basivsvektor von [mm]P_{m+2},[/mm] w Basisvektor von [mm]Q_{m+2})[/mm]
> Es ist sogar so, dass M*v nicht einmal ein Vielfaches von w
> ist, also scheint mein Ansatz nicht zu funktionieren oder
> mein Beispiel ist falsch...Mhh?
> Hab für die P die Standardbasisvektoren und die Summe
> dieser genommen und für Q [mm]\vektor{1 \\ 2 \\ 0}, \vektor{0 \\ 2 \\ 1}, \vektor{2 \\ 0 \\ 1}[/mm]
> und [mm]\vektor{2 \\ 3 \\ 1}[/mm] Die sind doch wohl in allgemeiner
> Lage?!
Schau dir mal die Matrix $M := [mm] \begin{pmatrix} 2&0&2\\ 4 &2 &0\\ 0&1&1 \end{pmatrix}$ [/mm] für dein Beispiel an.
LG mathfunnel
|
|
|
|