Berechne determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:28 Do 30.06.2005 | Autor: | Diddl |
Hallo, ich komme bei der folgenden Aufgabe nicht mehr weiter, könnt ihr mir ne Hilfestellung geben.....
Aufgabe:
Berechnen Sie det [mm] \begin{pmatrix} -1 & 0 & 1 & 1 \\ 3 & -1 & 0 & 2 \\ 1 & 2 & 1 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} [/mm] mit Hilfe elementarer Umformungen.
Überprüfen Sie das Ergebnis mit dem Laplace'schen Entwicklungssatz.
Meine Vorgehensweise:
[mm] \begin{vmatrix} -1 & 0 & 1 & 1 \\ 3 & -1 & 0 & 2 \\ 1 & 2 & 1 & -1 \\ -1 & -1 & 1 & 0 \end{vmatrix}
[/mm]
1) dritte Zeile + erste Zeile
2) vierte Zeile mal (-2) + erste Zeile
3) dritte Zeile mal 2 + zweite Zeile
4) vierte Zeile mal (-2) + zweite Zeile
5) erste Zeile mit 5 multiplizieren
6) zweite Zeile mal (-4) + erste Zeile
7) dritte und vierte Zeile umtauschen
dann habe ich stehen [mm] \begin{vmatrix} -18 & 0 & 0 & 0 \\ 7 & 5 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 1 & 2 & 1 & -1 \end{vmatrix} [/mm]
- wenn ich jetzt die Diagonale multipliziere erhalte ich 90.
- da ich im 5. Schritt die erste Zeile mit 5 multipliziert habe muss ich die 90 durch 5 dividieren und erhalte 18.
- da ich im 7. Schritt Zeilen umgetauscht habe ändert sich das Vorzeichen und aus 18 wird -18.
jetzt die Prüfung des Ergebnisses mit dem Laplace'schen Entwicklungssatz.
-1 [mm] \begin{vmatrix} -1 & 0 & 2 \\ 2 & 1 & -1 \\ -1 & 1 & 0 \end{vmatrix} [/mm] +3 [mm] \begin{vmatrix} 0 & 1 & 1 \\ 2 & 1 & -1 \\ -1 & 1 & 0 \end{vmatrix} [/mm] +1 [mm] \begin{vmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ -1 & 1 & 0 \end{vmatrix} [/mm] +(-1) [mm] \begin{vmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{vmatrix}
[/mm]
=> -1 [mm] \cdot [/mm] 5 + 3 [mm] \cdot [/mm] 4 + 1 [mm] \cdot [/mm] (-3) + (-1) [mm] \cdot [/mm] 2 = 2
2 [mm] \neq [/mm] -18
und da komme ich nicht mehr weiter :( weil die Ergebnisse nicht übereinstimmen muss doch irgendwo ein fehler sein aber wo???
|
|
|
|
Tja, gute Frage...., also mein PC sagt, dass -18 richtig ist (sorry, aber ich hatte keine Lust jeden Schritt nachzurechnen!). Allerdings komme ich über Laplace auch auf
Ha, hab den auch noch nicht ganz drauf gehabt.... Du musst noch gewisse Vorzeichen beachten: Der zweite und der vierte Summand müssen noch mit einem Minus versehen werden, sodass wir dann
-1 $ [mm] \cdot [/mm] $ 5 - 3 $ [mm] \cdot [/mm] $ 4 - 1 $ [mm] \cdot [/mm] $ (-3) + (-1) $ [mm] \cdot [/mm] $ 2 = -18
erhalten. Schau dir einfach noch mal die Formel an (musste ich auch grad).
Gruß Tran
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:42 Do 30.06.2005 | Autor: | Diddl |
ist in ordnung -18 ist doch richtig habe die aufgabe gelöst..war wirklich deswegen,weil ich vergessen habe auf die vorzeichen zu achten danke nochmal.:)
|
|
|
|