www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis: Abbildungen
Beweis: Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Sa 05.11.2005
Autor: Kati

Ich habe diese Frage noch in keinem anderen Internetforum gestellt.

Hi!

Ich hab hier folgende Aufgabe:

Beweisen Sie:
Für V [mm] \subseteq [/mm] Y gilt f ( [mm] f^{-1} [/mm] ( V )) [mm] \subseteq [/mm] V . gleichheit gilt genau dann für jedes V [mm] \subset [/mm] Y , wenn f surjektiv ist.

Also ich weiß hier garnet was ich hier jetzt im einzelnen beweisen soll. Auch den ersten Teil oder soll ich das einfach als gegeben hinnehmen. Und im 2. Teil weiß ich gar net was genau gemeint ist. Wo gilt Gleichheit? Logisch wär für mich  f ( [mm] f^{-1} [/mm] ( V )) = V , aber irgendwie find ich das sich das net danach anhört.

Gruß Kati

        
Bezug
Beweis: Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Sa 05.11.2005
Autor: Stefan

Hallo!

Also, zur Inklusion [mm] $f(f^{-1}(V)) \subseteq [/mm] V$:

Ist $w [mm] \in f(f^{-1}(V))$, [/mm] dann gibt es ein $v [mm] \in f^{-1}(V)$ [/mm] mit $f(v)=w$. Wegen $v [mm] \in f^{-1}(V)$ [/mm] gilt aber: $f(v) [mm] \in [/mm] V$, also $w [mm] \in [/mm] V$.

Sei nun $f$ surjektiv und $V [mm] \subseteq [/mm] Y$ beliebig gewählt. Weiterhin sei $v [mm] \in [/mm] V$ beliebig gewählt. Dann gibt es ein $w [mm] \in [/mm] X$ mit $f(w)=v$, also: [mm] $w\in f^{-1}(V)$. [/mm] Dann aber ist $v =f(w) [mm] \in f(f^{-1}(V))$. [/mm]

Umgekehrt sei $w [mm] \in [/mm] Y$ beliebig gewählt. Da nach Voraussetzung insbesondere [mm] $\{w\} [/mm] = [mm] f(f^{-1}(\{w\})$ [/mm] gilt, gibt es ein $v [mm] \in f^{-1}(\{w\})$ [/mm] mit $f(v) =w$. Damit ist $f$ surjektiv.

Genau, es war die Gleichheit

[mm] $f(f^{-1}(V)) [/mm] = V$

zu zeigen, du hattest es schon richtig verstanden...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]