Beweisproblem < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:42 So 25.01.2009 | Autor: | Kyrill |
Hallo,
ich lerne gerade für meine mündliche Abschlussprüfung in Mathe und leider ist mir schon auf der ersten Seite ein Beweis nicht so ganz klar.
Wir sollen beweisen, dass wenn eine Folge [mm] a_{n} \to [/mm] a konvergiert daraus folgt, dass das arithmetische Mittel [mm] \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} \to [/mm] a
Bei dem Beweis muss man zwei verschiedene Fälle betrachten. Zunächst der Fall, dass a=0 ist. Der ist mir klar. Beim zweiten Fall [mm] a\not=0 [/mm] haben wir folgendes aufgeschrieben.
Wenn a beliebig [mm] \Rightarrow a_{n}-a \to [/mm] 0
[mm] \Rightarrow \bruch{1}{n+1} \* \summe_{i=1}^{n} (a_{i}-a) \to [/mm] 0
Das folgt mit dem 1. Fall. soweit ist das klar, doch dann kommt:
[mm] \Rightarrow \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i}-a \to [/mm] 0
Im Prinzip wurde hier nur die Klammer weggelassen. Und das ist der Punkte den ich nicht verstehe. Meiner Meinungnach müsste hier jetzt folgendes stehen:
[mm] \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} [/mm] - [mm] \bruch{1}{n+1}\*a \to [/mm] 0
Wenn das da aber stände würde der Beweis aber nicht klappen, da er dann so weiter geht.
[mm] \Rightwarrow \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} \to [/mm] a
Womit man ja auch schon fertig ist.
Mein Problem ist dieser eine Zwischenschritt. Es wäre total super, wenn mir jemand meinen gedanklichen Fehler erklären würde!
Schoneinmal vielen Dank im Voraus!
Kyrill
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:04 Mo 26.01.2009 | Autor: | rainerS |
Hallo Kyrill!
> Hallo,
>
> ich lerne gerade für meine mündliche Abschlussprüfung in
> Mathe und leider ist mir schon auf der ersten Seite ein
> Beweis nicht so ganz klar.
>
> Wir sollen beweisen, dass wenn eine Folge [mm]a_{n} \to[/mm] a
> konvergiert daraus folgt, dass das arithmetische Mittel
> [mm]\bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} \to[/mm] a
>
> Bei dem Beweis muss man zwei verschiedene Fälle betrachten.
> Zunächst der Fall, dass a=0 ist. Der ist mir klar. Beim
> zweiten Fall [mm]a\not=0[/mm] haben wir folgendes aufgeschrieben.
>
> Wenn a beliebig [mm]\Rightarrow a_{n}-a \to[/mm] 0
> [mm]\Rightarrow \bruch{1}{n+1} \* \summe_{i=1}^{n} (a_{i}-a) \to[/mm]
> 0
> Das folgt mit dem 1. Fall. soweit ist das klar, doch dann
> kommt:
> [mm]\Rightarrow \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i}-a \to[/mm]
> 0
>
>
> Im Prinzip wurde hier nur die Klammer weggelassen. Und das
> ist der Punkte den ich nicht verstehe. Meiner Meinungnach
> müsste hier jetzt folgendes stehen:
> [mm]\bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i}[/mm] -
> [mm]\bruch{1}{n+1}\*a \to[/mm] 0
Das ist falsch. Du hast die Summation vergessen; es steht da:
[mm] \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} - \bruch{1}{n+1}\*\summe_{i=1}^{n} a = \bruch{1}{n+1} \* \summe_{i=1}^{n} a_{i} - \bruch{1}{n+1}\*(n+1)a [/mm]
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:16 Mo 26.01.2009 | Autor: | Kyrill |
Ohja, stimmt *schäm
Danke schön!
|
|
|
|