www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bild/kern
Bild/kern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild/kern: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:25 So 28.06.2009
Autor: Uebungistalles

Aufgabe
Bestimmen sie den Kern und das Bild dieser Matrix? [mm] \pmat{ 1 & 1 \\ 4 & -3 \\ 1 & -1 \\ 2 & 0} [/mm]

Aus der hier nicht wesentlichen Abbildung habe ich Matrix entwickelt mit
[mm] \pmat{ 1 & 1 \\ 4 & -3 \\ 1 & -1 \\ 2 & 0}. [/mm] Das habe ich auf Zeilenstufenform gebracht und habe erhalten: [mm] \pmat{ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0}. [/mm]

Hier kann ich ja direkt das Bild ablesen , weil es die Spalten dieser Matrix sind also ist eine Basis des Bildes < (1,0,0,0) , (0,1,0,0) > oder`? Wie finde ich am günstigsten den Kern?

        
Bezug
Bild/kern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 So 28.06.2009
Autor: pelzig


> Bestimmen sie den Kern und das Bild dieser Matrix? [mm]\pmat{ 1 & 1 \\ 4 & -3 \\ 1 & -1 \\ 2 & 0}[/mm]
>  
> Aus der hier nicht wesentlichen Abbildung habe ich Matrix
> entwickelt mit
> [mm]\pmat{ 1 & 1 \\ 4 & -3 \\ 1 & -1 \\ 2 & 0}.[/mm] Das habe ich
> auf Zeilenstufenform gebracht und habe erhalten: [mm]\pmat{ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0}.[/mm]

  

> Hier kann ich ja direkt das Bild ablesen , weil es die
> Spalten dieser Matrix sind also ist eine Basis des Bildes <
> (1,0,0,0) , (0,1,0,0) > oder'? Wie finde ich am günstigsten
> den Kern?

Nein, das Bild ist der von den Spalten der Darstellungsmatrix aufgespannte Raum, also [mm] $$\operatorname{im}\Phi [/mm] = [mm] \left\langle\vektor{1\\4\\1\\2},\vektor{1\\-3\\-1\\0}\right\rangle$$ [/mm]
Aus der Zeilenstufenform kannst du den Kern ablesen: [mm] $\operatorname{ker}\Phi =\{0\}$, [/mm] d.h. [mm] $\Phi$ [/mm] ist injektiv.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]