www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilinearform
Bilinearform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:28 Mi 09.05.2007
Autor: Engel205

Es sei f eine symmetrische Bilinearform auf einem  V mit  Signatur [mm] (n_{+}, n_{-}, n_{0}). [/mm]  Die Form f heißt negativ definit, wenn  [mm] n_{+}= n_{0} [/mm] = 0, sie heißt positiv semidefinit, wenn  [mm] n_{-} [/mm] = 0, und indefinit, wenn [mm] n_{+} [/mm] > 0 und  [mm] n_{-}> [/mm] 0 gilt. Es sei im folgenden V [mm] =\IR² [/mm]  und auf [mm] \IR² [/mm] sei eine Basis wie im Trägheitssatz von Sylvester gewählt, sodass die 2 [mm] \times [/mm] 2-Grammatrix von f eine Diagonalmatrix ist. Sei weiter q [mm] =q_{f} [/mm]  die zu f gehörige quadratische Form.

Beschreiben und zeichnen sie die Menge

{v aus [mm] \IR²: [/mm] q(v) = [mm] \alpha} \alpha [/mm] aus [mm] \IR [/mm]

in den Koordinaten der oben erwähnten Basis für eine negativ definite, eine indefinite und eine positiv semidefinite symmetrische Bilinearform f auf [mm] \IR². [/mm]



Das ist eine schwere Aufgabe und ich brauche dingend ein paar Tipps wie ich das am besten lösen kann....
DAnke schonmal!
MFG

        
Bezug
Bilinearform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 11.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]