Dimension des Kernes < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei K ein Körper und sei f: [mm] K^{5} \to K^{2} [/mm] eine surjektive Abbildung. Geben sie die Dimension des Kernes von f an. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo zusammen,
Zuallererst: Ich weiß, dass die Meisten so eine Aufgabe nur durch angucken ohne Probleme lösen könnten, aber ich habe leider einige Probleme mit darstellenden Matrizen und ähnlichem.
Also nun zu meinen Ansätzen: Der Kern, sind diejenigen Elemente aus dem [mm] K^{5} [/mm] die auf die Null abgebildet werden. Des weiteren haben wir bereits erfahren, dass der Kern einer Abbildung g mit der darstellenden Matrix [mm] A_{g}, [/mm] der Raum der Lösungen des homogenen linearen Gleichungssystems [mm] A_{g}x=0 [/mm] sei, folglich müsste ich nurnoch die Dimension jenes Raums herausstellen. Allerdings, gestaltet sich das für mich schwieriger als man sich vorstellen kann.
Ich wäre euch sehr dankbar wenn mir jemand möglichst genau erklären könnte wie ich an sowas rangehe, damit ich in Zukunft über solche Aufgaben nurnoch lachen kann :)
mfG Mathezwerg
p.s.: Ansich muss ich bei dieser Aufgabe nur ein Ergebnis ohne Weg angeben.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:08 Fr 05.01.2007 | Autor: | Volker2 |
Am einfachsten geht es mit der folgenden Dimensionsformel für Kern und Bild einer linearen Abbildung $f [mm] \colon V\rightarrow [/mm] W$ zwischen K-Vektorräumen V und W:
$$
dim(Kern(f))+dim(Bild(f))=dim(V),
$$
die Du vielleicht schon kennst. Falls nicht, so ist dann ein Spezialfall dieser Formel etwa wie folgt zu beweisen: Wähle Urbilder [mm] $\tilde{e}_1, \tilde{e}_2 \in K^5$ [/mm] der kanonischen Basisvektoren [mm] e_1, e_2\in K^2 [/mm] unter $f$ (Warum ist das möglich?). Wähle dann eine Basis [mm] v_1,\ldots,v_k, [/mm] $k=dim(Kern(f))$, von Kern(f). Dann zeige, dass [mm] \tilde{e}_1, \tilde{e}_2,v_1,\ldots,v_k [/mm] eine Basis von [mm] $K^5$ [/mm] ist, d.h. [mm] $K^5$ [/mm] erzeugen und linear unabhängig sind. Dann folgt [mm] $k+2=dim(K^5)=5$, [/mm] d.h. $dim(Kern(f))=k=3$. Der Beiweis der allgemeinen Formel geht genauso. Man beginnt halt damit, Urbilder einer Basis des Bildes von $f$ zu wählen.
|
|
|
|