Doppelsummen Beweis Problem < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:48 Mi 23.05.2012 | Autor: | s1mn |
Aufgabe | Berechnen Sie die folgenden Summen:
(b) [mm] \summe_{i=0}^{n} k^{4} [/mm] |
Hey Leute,
ich verzweifel noch an dieser Aufgabe....
Wir sollen die obige Summe berechnen.
Unser Tutor meinte das funktioniert mittels Doppelsumme, da der Beweis per "Phönix aus der Asche" nicht funktioniert, wegen gerader Hochzahl.
Nur leider komm ich einfach auf keine richtige Lösung....
Mein Ansatz war einfach parallel zum Beweis für [mm] k^{2} [/mm] in der Vorlesung:
[mm] \summe_{i=0}^{n} k^{4} [/mm] = [mm] \summe_{i=0}^{n} k^{2} [/mm] * [mm] k^{2} [/mm] = [mm] \summe_{i=0}^{n} \summe_{j=i}^{n} j^{2}
[/mm]
Allerdings wenn ich so weiterrechne, erhalte ich wenn ich alles fertiggerechnet hab (analog zum Vorlesungsbeweis) die Formel für [mm] \summe_{i=0}^{n} k^{3} [/mm] ....
Passt mein Ansatz überhaupt ? Oder brauch ich ne 3fach Summe ?
Bitte helft mir weiter....
Grüße
|
|
|
|
Hallo s1mn,
da stimmt aber allerlei bei den Indices nicht.
> Berechnen Sie die folgenden Summen:
>
> (b) [mm]\summe_{i=0}^{n} k^{4}[/mm]
Das wäre ja einfach: [mm] (n+1)k^4
[/mm]
Oder geht es um [mm] \summe_{\red{k}=0}^{n}k^4 [/mm] ?
> Hey Leute,
>
> ich verzweifel noch an dieser Aufgabe....
> Wir sollen die obige Summe berechnen.
> Unser Tutor meinte das funktioniert mittels Doppelsumme,
> da der Beweis per "Phönix aus der Asche" nicht
> funktioniert, wegen gerader Hochzahl.
>
> Nur leider komm ich einfach auf keine richtige Lösung....
>
> Mein Ansatz war einfach parallel zum Beweis für [mm]k^{2}[/mm] in
> der Vorlesung:
>
> [mm]\summe_{i=0}^{n} k^{4}[/mm] = [mm]\summe_{i=0}^{n} k^{2}[/mm] * [mm]k^{2}[/mm] = [mm]\summe_{i=0}^{n} \summe_{j=i}^{n} j^{2}[/mm]
Wieso kann man so aufteilen? Das ist mir nicht ersichtlich.
> Allerdings wenn ich so weiterrechne, erhalte ich wenn ich
> alles fertiggerechnet hab (analog zum Vorlesungsbeweis) die
> Formel für [mm]\summe_{i=0}^{n} k^{3}[/mm] ....
Nein, garantiert nicht. Ich glaube, Du kopierst da einfach eine Rechnung, ohne ihren Zusammenhang verstanden zu haben.
> Passt mein Ansatz überhaupt ? Oder brauch ich ne 3fach
> Summe ?
> Bitte helft mir weiter....
Wenn überhaupt, dann eine Vierfachsumme (ernst gemeint). Das ist aber ein ziemlich mühsamer und fehlerträchtiger Ansatz.
Gesucht ist ein Polynom fünften Grades. Das kann man auf verschiedene Weisen ermitteln, am einfachsten aber über ein lineares Gleichungssystem.
Du kannst die Summe aber auch auf die offenbar ja schon bekannten Summenformeln für k, [mm] k^2 [/mm] und [mm] k^3 [/mm] zurückführen. Das ist allerdings nicht weniger Arbeit, im Gegenteil.
Grüße
reverend
|
|
|
|