www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte berechnen
Eigenwerte berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Mi 23.05.2012
Autor: dudu93

Hallo, ich bin zur Zeit dabei, Eigenwerte zu berechnen.

Zuerst habe ich das charakt. Polynom aufgestellt. Dann habe ich Lambda von den Hauptdiagonalelementen abgezogen. Mit dem Entwicklungssatz nach der zweiten Zeile wollte ich jetzt die Nullstellen bzw. Eigenwerte berechnen.

Den ersten habe ich. Der ist 6...und ergibt sich ja aus der ersten Klammer. Danach wollte ich für die nächsten Eigenwerte/Nullstellen die P/Q-Formel anwenden, weil das uns auch so in der Vorlesung gesagt wurde. Doch es würden dann sehr "komische" Zahlen rauskommen.
Wenn ich die Nullstellen von der Klammer einfach so ablesen würde, wäre das laut Musterlösung richtig.
Die nächsten Eigenwerte wären demzufolge 3 und -5. Doch wieso kann ich nicht die PQ-Formel anwenden? Das verstehe ich nicht.

Was mache ich außerdem mit dem rechten Teil von der Determinante? Also - 3 (5 Lambda - 30).
Wenn ich das nach Lambda umstelle, käme auch 6 raus. Kann ich diesen Term also quasi beiseite lassen?

Anbei ist meine Rechnung. Über Hilfe wäre ich sehr dankbar!

[]klick

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Mi 23.05.2012
Autor: Teufel

Hi!

Besser wäre es, wenn du deine Rechnung abtippen würdest, einfach der Übersichtlichkeit halber.

Zur Rechnung:

Du berechnest in der letzten Zeile die Nullstellen von [mm] $\lambda^2+2\lambda [/mm] -30$, aber die Nullstellen davon zu kennen hilft dir ja nicht weiter! Du musst das ganze Polynom 0 setzen!

d.h. [mm] (6-\lambda)*(\lambda^2+2\lambda -30)-3(3\lambda-30)=0. [/mm] Eine Nullstelle ist 6, dann musst du jetzt [mm] (6-\lambda) [/mm] abspalten und dann das Restpolynom 0 setzen! Dann klappt das auch mit der p-q-Formel.

Bezug
                
Bezug
Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mi 23.05.2012
Autor: dudu93

Meinst du das so?

[mm] \lambda^2 [/mm] + [mm] 2\lambda-30-15\lambda+90 [/mm]

= [mm] \lambda^2-13\lambda+60 [/mm] = 0

Wenn ich hier die P/Q-Formel anwende, kommt aber eine negative Wurzel raus.

Bezug
                        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:26 Mi 23.05.2012
Autor: barsch

Hallo!

Wenn ich das richtig entziffere, lautet das char. Polynom:

[mm] (6-\lambda)\cdot{}(\lambda^2+2\lambda -30)-3(5\lambda-30) [/mm]

Das kannst du ein wenig umformen:

[mm] =(6-\lambda)\cdot{}(\lambda^2+2\lambda -30)-3*5(\lambda-6) =(6-\lambda)\cdot{}(\lambda^2+2\lambda -30)+15*(6-\lambda)=(6-\lambda)*(\lambda^2+2\lambda -30+15)=(6-\lambda)*(\lambda^2+2\lambda -15)=0 \ \ \gdw \ \ (6-\lambda)=0 \ \ \textrm{oder} \ \ \lambda^2+2\lambda -15=0[/mm]

Die pq-Formel musst du anwenden bei [mm]\lambda^2+2\lambda -15=0[/mm]

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]