Eindeutigkeit Anfangswertaufg. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:47 Fr 22.01.2010 | Autor: | tynia |
Aufgabe | Satz über die Eindeutigkeit der Lösung der Anfangswertaufgabe für die homogene Gleichung und die Schlussfolgerung für die Determinante aus den Funktionen der kanonischen Integralbasis und ihren Ableitungen. |
Hallo.
Es geht hier um DGL nter Ordnung.
Kann mir jemand zu obigem Satz was sagen? Vielleicht in einfachen Worten?
Danke schonmal.
LG
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:14 Sa 23.01.2010 | Autor: | pelzig |
Vielleicht stellst du deine Frage etwas spezifischer. Wenn es darum geht, einen Satz den ihr z.B. in der VL hattet nochmal genauer zu erklären, dann gib den Satz doch mal in seiner exakten Formulierung mit an. Für mich ist anhand deiner Beschreibung nicht ersichtlich welcher Satz gemeint ist... geht es um zufällig um lineare gewöhnliche DGL n-ter Ordnung?
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 18:32 Sa 23.01.2010 | Autor: | tynia |
Also ich habe dazu folgendes stehen:
Homogene DGL - Anfangswertproblem
Mit dem Anfangswertproblem wird über die Vorgabe von Zusatzbedingungen, die für den sogenannten Anfangszeitpunkt gemacht werden, ein Integral aus der Vielzahl der Integrale ausgewählt. Bei der allgemeinen Form der Lösung der DGL n-ter Ordnung ist ersichtlich,
dass n zusätzliche Bedingungen nötig sind, um die unbestimmten Konstanten [mm] C_{i} [/mm] zu spezifizieren. Der Standardfall der Anfangsbedingung ist nachfolgend angeführt. Es wäre aufgrund der unendlichen Differenzierbarkeit der Lösung auch möglich, höhere Ableitungen in die Bedingungen miteinzubeziehen und dafür andere wegzulassen.
Das Anfangswertproblem besitzt bei beliebiger Vorgabe genau eine Lösung!
So. Und mit der Determinante aus den Funktionen der kanonischen Integralbasisist die Wronski - Determinante gemeint.
Hilft das?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:24 Sa 23.01.2010 | Autor: | pelzig |
Was genau ist die Frage?
Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Mo 25.01.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 So 24.01.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|