Elemen. und Ana. Geometrie < Internationale MO < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe von den klassischen Wettberwerben für Schüler, wie die der IMO, auch mit Methoden der analystischen Geometrie lösen könnte anstatt mit Elementargeometrie.
|
|
|
|
> Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe
> von den klassischen Wettberwerben für Schüler, wie die
> der IMO, auch mit Methoden der analystischen Geometrie
> lösen könnte anstatt mit Elementargeometrie.
Hallo
zwar kenne ich mich mit solchen Wettbewerbsaufgaben
nicht so sehr aus, habe jedenfalls damit kaum noch zu tun.
Ich würde aber sagen, dass man wohl jede Geometrieaufgabe,
die man mit "Elementargeometrie" lösen kann, im Prinzip
auch mit den Mitteln der "analytischen Geometrie" lösen
kann.
Es ist aber im Einzelfall oft eher ungeschickt, eine Aufgabe
"analytisch" zu lösen, wenn sie auch mit elementargeometrischen
Überlegungen zu lösen ist. Letzteres ist nämlich oft einfacher
und übersichtlicher.
LG , Al-Chwarizmi
|
|
|
|
|
Die mathematische Antwort lautet: Ja, wenn man Elementargeometrie als eine der üblichen Axiomatisierungen, z.B. von Hilbert und analytische Geometrie als Untersuchen des dreidimensionalen affinen Raumes über den reellen Zahlen interpretiert. Das liegt schlicht daran, dass der affine Raum ein spezielles Modell der Elementargeometrie liefert. Insbesondere lässt sich jeder Satz, der sich elementargeometrisch beweisen lässt, auch in der analytischen Geometrie beweisen. Eine interessantere Frage wäre, ob sich eine Aussage, in der nur elementargeometrische Begriffe vorkommen, das heißt "Punkt, Gerade, Ebene, liegen, zwischen, kongruent" (siehe Hilbert) genau dann mit Hilberts Axiomen beweisen lässt, wenn sie sich mit linearer Algebra im [mm] $\IR^3$ [/mm] beweisen lässt. Das weiß ich nicht.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:50 Do 03.12.2015 | Autor: | fred97 |
> Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe
> von den klassischen Wettberwerben für Schüler, wie die
> der IMO, auch mit Methoden der analystischen Geometrie
> lösen könnte anstatt mit Elementargeometrie.
Schau mal hier hinein:
http://www.math.uni-bonn.de/ag/ana/SoSe2012/MB02_Skript.pdf
FRED
|
|
|
|