Elemente von Q[x]/x³-2 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Man berechne 1/(1 + x) im Korper
[mm] Q[x]/(x^3 [/mm] − 2) |
ich brauche eure hilfe und komme auch nicht mehr weiter ,muss zunächst einmal wissen
wie die elemente von q[x]/x³-2 aussehen :
ich weiß aufjedenfall ,dass 1,2,x,x² elemente von q[x]/x³-2
wie sieht es mit der 4,3 ,1/2 [mm] ,x^6 [/mm] aus ?
ich weiß nur dass aus x³-2=0 => x³=2
ich hoffe ihr könnt mir dabei behilfreich sein
|
|
|
|
moin,
Deine Elemente haben die Form [mm] $ax^2+bx+c$ [/mm] mit $a,b,c [mm] \in \IQ$ [/mm] beliebig.
Insbesondere sind auch 4 und 3 enthalten (wähle jeweils $a=b=0$).
Die Addition sollte dadurch klar sein, da dabei der Grad des Polynoms nicht größer werden kann.
Bei der Multiplikation verwendet man [mm] $x^3=2$, [/mm] um das zu reduzieren.
Also als Beispiel:
[mm] $x^6 [/mm] = [mm] (x^3)^2 [/mm] = [mm] 2^2 [/mm] = 4$.
[mm] $x^5+2x [/mm] = [mm] x^3*x^2+2x [/mm] = [mm] 2x^2+2x$.
[/mm]
Auf diese Art kann man das Produkt ganz normal wie das Produkt zweier Polynome in [mm] $\IQ[x]$ [/mm] ausrechnen und dann modulo [mm] $x^3-2$ [/mm] reduzieren; sodass wieder alles die Form [mm] $ax^2+bx+c$ [/mm] erhält.
Deine Aufgabe ist es jetzt also $a,b,c [mm] \in \IQ$ [/mm] zu finden, sodass
[mm] $(ax^2+bx+c)(1+x) [/mm] = 1$ ist.
Dafür würde ich dir raten das Produkt auszurechnen, zu reduzieren wie oben vorgeführt und dann zu gucken wie du $a,b,c$ wählen musst, damit 1 herauskommt.
Als Hinweis: $a,b,c$ sind eindeutig (da Inverse in einem Körper eindeutig sind).
Wenn du einen allgemeineren Ansatz möchtest, der auch im allgemeinen Fall funktioniert und nicht nur in diesem Beispiel, dann überlege dir folgendes:
Es ist [mm] ggT$(x^3-2,x+1)=1$.
[/mm]
Damit gibt es also $f,g [mm] \in \IQ[x]$ [/mm] mit [mm] $f*(x^3-2)+g*(x+1)=1$.
[/mm]
Reduzierst du dies nun modulo [mm] $x^3-2$, [/mm] so musst du dafür nicht erst ausmultiplizieren sondern kannst sofort [mm] $x^3-2=1$ [/mm] sagen.
Dann steht da also $g*(x+1)=1$ und damit ist $g$ - ggf. nach Reduktion - das gesuchte Inverse.
Dieses Vorgehen mit dem Euklidischen Algorithmus - der dir ja unter anderem $f,g$ liefert - funktioniert immer, solange die beiden betrachteten Polynome teilerfremd sind.
lg
Schadow
|
|
|
|