Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Der diskrete Wahrscheinlichkeitsraum Ω = {1, 2, . . . , 6} × {1, 2, . . . , 6} fur zwei Münzwurfe sind Zufallsvariablen fur die Summe und die Differenz der beide Werte interessant:
X (a, b) = a + b
Y (a, b) = |a − b|
Der Erwartungswert der Zufallsvariablen X ist definiert als E(X) = [mm] \summe_{\omega \in \Omega}^{} X(\omega) Pr(\omega)
[/mm]
Im Beispiel kann man Erwartungswerte relativ leicht ausrechen:
1) E (X) = 7 und E (Y) = [mm] \frac{70}{36}
[/mm]
|
Aus unserem Matheskript.
Ich versteh jedoch nicht wie man auf die 7 kommt. Für jeweils einen Würfel versteh ich die Problematik, oder denke ich zumindestens. [mm] Pr(\omega) [/mm] ist jeweils [mm] \frac{1}{6} [/mm] und für zwei Würfe dann [mm] \frac{1}{36}. [/mm] Nur versteh ich nicht wie das [mm] X(\omega) [/mm] gewählt wurde.
Hat jemand eine Idee?
|
|
|
|
Hallo,
für das erste Beispiel ist X(w) doch ein Element der Menge {2,3,4,5,6,7,8,9,10,11,12}. Und jetzt ganz normal den Erwartungswert bestimmen.
Grüße, Steffen
|
|
|
|
|
Aber das wäre doch dann:
[mm] \frac{1}{36} \cdot [/mm] 2 + [mm] \frac{1}{36} \cdot [/mm] 3 + [mm] \frac{1}{36} \cdot [/mm] 4 + [mm] \frac{1}{36} \cdot [/mm] 5 + [mm] \frac{1}{36} \cdot [/mm] 6 + [mm] \frac{1}{36} \cdot [/mm] 7 + [mm] \frac{1}{36} \cdot [/mm] 8 + [mm] \frac{1}{36} \cdot [/mm] 9 + [mm] \frac{1}{36} \cdot [/mm] 10 + [mm] \frac{1}{36} \cdot [/mm] 11 + [mm] \frac{1}{36} \cdot [/mm] 12 = 2,13..
|
|
|
|
|
> Aber das wäre doch dann:
>
> [mm]\frac{1}{36} \cdot[/mm] 2 + [mm]\frac{1}{36} \cdot[/mm] 3 + [mm]\frac{1}{36} \cdot[/mm]
> 4 + [mm]\frac{1}{36} \cdot[/mm] 5 + [mm]\frac{1}{36} \cdot[/mm] 6 +
> [mm]\frac{1}{36} \cdot[/mm] 7 + [mm]\frac{1}{36} \cdot[/mm] 8 + [mm]\frac{1}{36} \cdot[/mm]
> 9 + [mm]\frac{1}{36} \cdot[/mm] 10 + [mm]\frac{1}{36} \cdot[/mm] 11 +
> [mm]\frac{1}{36} \cdot[/mm] 12 = 2,13..
Nein, eher so (als Bsp.):
E[X] = 2 * [mm] Pr_{X} [/mm] ({2}) + ...+ 6 * [mm] Pr_{X} [/mm] ({6})+ ... + 12 * [mm] Pr_{X} [/mm] ({12}) = 2 * [mm] Pr(X^{-1} [/mm] (2) + ... + 6 * [mm] Pr(X^{-1} [/mm] (6)) + ... + 12 * [mm] Pr(X^{-1} [/mm] (12)) = 2 * Pr((1,1)) + ... + 6 * Pr((1,5)(5,1),(2,4),(4,2),(3,3)) + 12 * Pr ((6,6))
Dabei meint [mm] Pr(X^{-1}(12)) [/mm] die Wahrscheinlichkeit für die Päarchen (x,y) deren Summe 12 ergibt. Da gibt es nur ein Paar nämlich (6,6), so dass P = 1/36 ist. Im Falle von [mm] Pr(X^{-1}(6)) [/mm] gibt es fünf Päarchen also ist P = 5/36 usw. OK?
|
|
|
|