Folgen / Mengenlehre < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:37 Di 09.11.2010 | Autor: | xcase |
Aufgabe | Finden Sie
abgeschlossene Teilmengen [mm] (A_{n})_{n\varepsilon\IN} [/mm] von [mm] \IR^{2}, [/mm] so dass [mm] \bigcup_{n\varepsilon\IN} A_{n} \not\varepsilon (\emptyset, \IR^{2}) [/mm] offen ist. |
Hallo,ich habe mir das erstmal versucht mit Mengen vorzustellen (z.b. Kreise) die abgeschlossen waren (sprich alle ihre Randpunkte enthalten). Wenn man aber abgeschlossene Mengen vereinigt, dann sind die Mengen ja noch immer abgeschlossen.
Mit Folgen habe ich mir auch versucht das vorzustellen. Wenn ich z.b. die Folge [mm] \bruch{1}{n} [/mm] habe und die gegen unendlich laufen lasse (also das n), dann habe ich eine Folge die weder abgeschlossen noch offen ist, da die 0 nicht enthalten ist.
In unserem Skript steht das das Intervall [mm] [-\infty,+\infty] [/mm] abgeschlossen UND! offen sind. Aber kann ich das dann auch einfach auf eine Folge übertragen?
Sprich ich sage wir haben die Folge [mm] \vektor{-n \\ +n}_{n\varepsilon\IN} [/mm] . Wir hätten dann sozusagen eine Folge die gegen [mm] -\infty [/mm] läuft und eine gegen [mm] +\infty [/mm] . Wäre das richtig?
Danke für die Hilfe
Gruß!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:11 Di 09.11.2010 | Autor: | fred97 |
> Finden Sie
> abgeschlossene Teilmengen [mm](A_{n})_{n\varepsilon\IN}[/mm] von
> [mm]\IR^{2},[/mm] so dass [mm]\bigcup_{n\varepsilon\IN} A_{n} \not\varepsilon (\emptyset, \IR^{2})[/mm]
> offen ist.
> Hallo,ich habe mir das erstmal versucht mit Mengen
> vorzustellen (z.b. Kreise) die abgeschlossen waren (sprich
> alle ihre Randpunkte enthalten). Wenn man aber
> abgeschlossene Mengen vereinigt, dann sind die Mengen ja
> noch immer abgeschlossen.
nein. Das ist falsch !
> Mit Folgen habe ich mir auch versucht das vorzustellen.
> Wenn ich z.b. die Folge [mm]\bruch{1}{n}[/mm] habe und die gegen
> unendlich laufen lasse (also das n), dann habe ich eine
> Folge die weder abgeschlossen noch offen ist, da die 0
> nicht enthalten ist.
Unfug ! Was soll denn eine "offene" oder "abgeschlossene" Folge sein ????
> In unserem Skript steht das das Intervall
> [mm][-\infty,+\infty][/mm] abgeschlossen UND! offen sind. Aber kann
> ich das dann auch einfach auf eine Folge übertragen?
Was soll das ? Was hat das mit der Aufgabe zu tun ?
> Sprich ich sage wir haben die Folge [mm]\vektor{-n \\ +n}_{n\varepsilon\IN}[/mm]
> . Wir hätten dann sozusagen eine Folge die gegen [mm]-\infty[/mm]
> läuft und eine gegen [mm]+\infty[/mm] . Wäre das richtig?
Nein.
Es ist schwer, Dir Tipps zu geben, ohne die Lösung zu verraten
Verschaffe Dir eine Folge [mm] (r_n) [/mm] in (0,1) mit [mm] \limes_{n\rightarrow\infty}r_n=1. [/mm] Welche ist schnurz, such Dir eine aus.
Wähle als [mm] A_n [/mm] die abgeschlossene Kreischeibe um (0,0) mit Radius [mm] r_n.
[/mm]
Was ist dann $ [mm] \bigcup_{n\varepsilon\IN} A_{n} [/mm] $ ?
FRED
>
> Danke für die Hilfe
>
> Gruß!
|
|
|
|