Gegenseitige Lage von Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe gerade ein Problem mit einer Matheaufgabe und komme einfach nicht weiter. Da ich die Arbeit bereits morgen schreibe, würde ich mich sehr freuen, wenn sich jemand findet, der mir die Aufgabe erklärt.
Aufgabe 2 | Aufgabe:
Bild:
[Dateianhang nicht öffentlich]
a) Fig. 1 zeigt einen Spat. Die Punkte P, Q, R, S sind Mittelpunkte von Seitenflächen. Bestimmen Sie die gegenseitige LAge der Geraden g und h, der Geraden g und i sowie der Geraden h und i. Geben Sie, falls sich die Geraden schneiden, jeweils den Ortsvektor des Schnittpunktes an. |
Also nach meinem Lösungsansatz müsste man ja zuerst die Gleichungen für die 3 Geraden ermitteln mithilfe der Vektoren. Nur wie komme ich darauf?
Wäre dann der Punkt Q zum Beispiel (1/2a ; 1/2b ; 1/2 c) ? Und
R (1/2 a ; 0 ; 1/2 c)
Dann müsste ja die Geradengleichung lauten :
h = Q + t * R
h = (1/2a ; 1/2b ; 1/2 c) + t * (1/2 a ; 0 ; 1/2 c)
Ich danke euch sehr für eure Hilfe.
Gruß
Anna
Dateianhänge: Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:47 Mo 01.05.2006 | Autor: | M.Rex |
Hallo Anna,
Die überlegung, wie ich zu den Geraden komme ist völlig richtig.
Die Rechnung für die gesuchten Punkte P, Q, R, S stimmt leider nicht ganz. Die Idee mit der Multiplikation mit [mm] \bruch{1}{2} [/mm] ist aber fast richtig.
Ich gehe mal davon aus, dass der Ursprung deines Koordinatensystems in dem "Kreuzungspunkt" deiner Vektoren [mm] \vec{a} [/mm] , [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm] liegt, also in der hinteren linken Ecke deiner Zeichnung. Wenn nicht, musst du in der folgenden Rechnung noch den Ortsvektor dieses Punktes hinzuaddieren.
Für den Punkt S gilt jetzt: [mm] \vec{s} [/mm] = 0,5 * [mm] \vec{a} [/mm] + 0,5 * [mm] \vec{c} [/mm] .
P, Q und S sind etwas komlizierter, es gilt nämlich
[mm] \vec{p} [/mm] = [mm] \vec{a} [/mm] + 0,5 * [mm] \vec{b} [/mm] + 0,5 * [mm] \vec{c} [/mm] , und
[mm] \vec{q} [/mm] = [mm] \vec{c} [/mm] + 0,5 * [mm] \vec{b} [/mm] + 0,5 * [mm] \vec{a}, [/mm] und
[mm] \vec{s} [/mm] = [mm] \vec{b} [/mm] + 0,5 * [mm] \vec{a} [/mm] + 0,5 * [mm] \vec{c} [/mm] .
So, ich hoffe, ich konnte dir helfen.
Marius
|
|
|
|
|
Hallo !
Vielen Dank nochmals für deine Antwort, ich habe die Aufgabe nun gelöst.
LG
Anna
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:17 Di 02.05.2006 | Autor: | M.Rex |
Super, dank dir für die Rückmeldung
Marius
|
|
|
|