www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Gerade h senkrecht zu Gerade g
Gerade h senkrecht zu Gerade g < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade h senkrecht zu Gerade g: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mi 06.12.2006
Autor: Marion_

Aufgabe
Gegeben sind ein Punkt P und eine Gerade g. Bestimmen Sie den Punkt Q auf g so, dass die Gerade h durch P und Q orthogonal zu g ist. Geben Sie auch eine Gleichung für h an.

P(-4/0/3), g:[mm]\vec x[/mm]= [mm]\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}[/mm]+t [mm]\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}[/mm]

Hallo,

hier ist mein Lösungsansatz:

h: [mm]\vec x[/mm]= [mm]\begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}[/mm] + [mm]\begin{pmatrix} q_1+4 \\ q_2-0 \\q_3- 3 \end{pmatrix}[/mm]

Außerdem muss das Skalarprodukt von 2 Vektoren ja 0 sein, wenn sie senkrecht zueinander sein sollen.
Dafür nimmt man ja die Richtungsvektoren, nur das Problem wäre ja, dass man da 3 Unbekannte in einer Gleichung hätte... Alleine komme ich nicht mehr weiter und würde mich  über eure Hilfe freuen.
Danke.
Gruß,
Marion.

        
Bezug
Gerade h senkrecht zu Gerade g: kleiner Tippfehler, sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Mi 06.12.2006
Autor: Marion_

Hallo,

ich habe gerade einen kleinen Tippfehler entdeckt, muss natürlich so heißen:
h: $ [mm] \vec [/mm] x $= $ [mm] \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix} [/mm] $ + s $ [mm] \begin{pmatrix} q_1+4 \\ q_2-0 \\q_3- 3 \end{pmatrix} [/mm] $

Bezug
        
Bezug
Gerade h senkrecht zu Gerade g: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 06.12.2006
Autor: MasterEd

Hallo,

sei Q ein beliebiger Punkt auf der Geraden. Für irgendein spezielles t hat Q den Ortsvektor [mm] $\vec{q}=\pmat{2+t\\1+t\\3-t}$. [/mm] Von P aus geht man zu diesem Punkt Q auf der Geraden, d.h. man betrachtet den Vektor [mm] $\vec{PQ}=\vec{q}-\vec{p}=\pmat{2+t\\1+t\\3-t}-\pmat{-4\\0\\3}=\pmat{6+t\\1+t\\-t}$. [/mm]
Dieser Vektor [mm] $\vec{PQ}$ [/mm] steht senkrecht zur Geraden, d.h. insbesondere senkrecht zum Richtungsvektor der Geraden. Daher muss das Skalarprodukt [mm] $\vec{PQ}*\pmat{1\\1\\-1}=0$ [/mm] sein. Man erhält [mm] $\pmat{6+t\\1+t\\-t}*\pmat{1\\1\\-1}=(6+t)+(1+t)-(-t)=7+3t=0$. [/mm] Daraus folgt [mm] $t=-\bruch{7}{3}$. [/mm] Dies setzt man in die Geradengleichung (oder in den allgemeinen Ortsvektor [mm] $\vec{q}$) [/mm] ein, man erhält dann den Ortsvektor zum gesuchten Punkt Q, so dass der Vektor [mm] $\vec{PQ}$ [/mm] senkrecht zur Geraden ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]