Gerade h senkrecht zu Gerade g < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:28 Mi 06.12.2006 | Autor: | Marion_ |
Aufgabe | Gegeben sind ein Punkt P und eine Gerade g. Bestimmen Sie den Punkt Q auf g so, dass die Gerade h durch P und Q orthogonal zu g ist. Geben Sie auch eine Gleichung für h an.
P(-4/0/3), g:[mm]\vec x[/mm]= [mm]\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}[/mm]+t [mm]\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}[/mm] |
Hallo,
hier ist mein Lösungsansatz:
h: [mm]\vec x[/mm]= [mm]\begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}[/mm] + [mm]\begin{pmatrix} q_1+4 \\ q_2-0 \\q_3- 3 \end{pmatrix}[/mm]
Außerdem muss das Skalarprodukt von 2 Vektoren ja 0 sein, wenn sie senkrecht zueinander sein sollen.
Dafür nimmt man ja die Richtungsvektoren, nur das Problem wäre ja, dass man da 3 Unbekannte in einer Gleichung hätte... Alleine komme ich nicht mehr weiter und würde mich über eure Hilfe freuen.
Danke.
Gruß,
Marion.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:36 Mi 06.12.2006 | Autor: | Marion_ |
Hallo,
ich habe gerade einen kleinen Tippfehler entdeckt, muss natürlich so heißen:
h: $ [mm] \vec [/mm] x $= $ [mm] \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix} [/mm] $ + s $ [mm] \begin{pmatrix} q_1+4 \\ q_2-0 \\q_3- 3 \end{pmatrix} [/mm] $
|
|
|
|
|
Hallo,
sei Q ein beliebiger Punkt auf der Geraden. Für irgendein spezielles t hat Q den Ortsvektor [mm] $\vec{q}=\pmat{2+t\\1+t\\3-t}$. [/mm] Von P aus geht man zu diesem Punkt Q auf der Geraden, d.h. man betrachtet den Vektor [mm] $\vec{PQ}=\vec{q}-\vec{p}=\pmat{2+t\\1+t\\3-t}-\pmat{-4\\0\\3}=\pmat{6+t\\1+t\\-t}$.
[/mm]
Dieser Vektor [mm] $\vec{PQ}$ [/mm] steht senkrecht zur Geraden, d.h. insbesondere senkrecht zum Richtungsvektor der Geraden. Daher muss das Skalarprodukt [mm] $\vec{PQ}*\pmat{1\\1\\-1}=0$ [/mm] sein. Man erhält [mm] $\pmat{6+t\\1+t\\-t}*\pmat{1\\1\\-1}=(6+t)+(1+t)-(-t)=7+3t=0$. [/mm] Daraus folgt [mm] $t=-\bruch{7}{3}$. [/mm] Dies setzt man in die Geradengleichung (oder in den allgemeinen Ortsvektor [mm] $\vec{q}$) [/mm] ein, man erhält dann den Ortsvektor zum gesuchten Punkt Q, so dass der Vektor [mm] $\vec{PQ}$ [/mm] senkrecht zur Geraden ist.
|
|
|
|