www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden
Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:45 Fr 05.12.2008
Autor: Sara

Hallo an alle,

ich lerne gerade analytische geometrie und die Lage zweier Geraden.
Ich weiß, dass man die Geraden zunächst auf Parallität prüfen muss. Wenn sie paralell sind muss man gucken ob sie echt parallel sind oder identsch. wenn sie nicht paralell sind muss man schauen ob sie einen schnittpunkt haben oder windschief sind. So viel habe ich verstanden, aber ich habe nicht verstanden, wie man prüfen kann, ob zwei geraden identisch sind.
Kann mir das jemand mal sagen?

Würde mich freuen.

LG
Sara

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Fr 05.12.2008
Autor: reverend

Das kommt darauf an, in welcher Darstellungsform Deine Geraden vorliegen.
Ich nehme (angesichts des aktuellen Themas) doch an, dass die Parameterform vorherrscht, also Ortsvektor eines Stütz- oder Aufpunkts plus Parameter mal Richtungsvektor.

Identisch sind zwei so dargestellte Geraden, wenn a) die beiden Richtungsvektoren kollinear sind (also skalare Vielfache) und b) ein beliebiger Punkt einer der beiden Geraden auf der anderen liegt.

Alternativ kannst Du statt a) und b) auch zeigen, dass zwei Punkte einer der beiden Geraden auf der anderen liegen - und damit alle.

Bezug
                
Bezug
Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:24 Fr 05.12.2008
Autor: Sara

Zitat:
"ein beliebiger Punkt einer der beiden Geraden auf der anderen liegt."

wie kann ich es testen ob es so ist muss ich dann nur lamda und müh in das gleichungssystem einsetzen und gucken ob das gleichungssystem sich lösen lässt?





Bezug
                        
Bezug
Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Fr 05.12.2008
Autor: Dinker

Hallo Sara

Hast du denn eine Aufgabe? Mathematik lernt man am besten und effektivsten mit Anwänden, mir geht es auf jeden Fall so.
Wenn nicht könnte ich sonst ein Beispiel aufwerfen

Gruss DInker

Bezug
                        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Fr 05.12.2008
Autor: Marcel

Hallo,

> Zitat:
>   "ein beliebiger Punkt einer der beiden Geraden auf der
> anderen liegt."
>  
> wie kann ich es testen ob es so ist muss ich dann nur lamda
> und müh in das gleichungssystem einsetzen und gucken ob das
> gleichungssystem sich lösen lässt?

wenn Du zwei Geraden der Form

[mm] $$g_1: \vec{x}=\vec{p_1}+\lambda*\vec{q_1}$$ [/mm]

[mm] $$g_2: \vec{x}=\vec{p_2}+\mu*\vec{q_2}$$ [/mm]

gegeben hast und schon siehst, dass [mm] $\vec{q_1}$ [/mm] und [mm] $\vec{q_2}$ [/mm] linear abhängig sind, dann prüf' doch einfach, ob es ein [mm] $\lambda$ [/mm] so gibt, dass [mm] $\vec{p_2}=\vec{p_1}+\lambda*\vec{q_1}$ [/mm] gilt. Falls ja, so sind die Geraden in diesem Falle identisch, falls nein, dann sind sie in diesem Falle echt parallel.

Du kannst also einfach mit einem Stützvektor arbeiten (oben: [mm] $\vec{p_2}$ [/mm] liegt auf [mm] $g_2$ [/mm] (setze einfach [mm] $\mu=0$ [/mm] ein!) und dann kann man prüfen, ob [mm] $\vec{p_2}$ [/mm] auch auf [mm] $g_1$ [/mm] liegt).

Übrigens kannst Du das ganze auch durchaus durch Gleichsetzen der Geraden machen:
Wenn [mm] $\vec{q_1}$ [/mm] und [mm] $\vec{q_2}$ [/mm] linear abhängig sind, dann können die Geraden ja nur noch identisch oder echt parallel sein. Durch das Gleichsetzen erhälst Du ja alle Punkte, die sowohl auf [mm] $g_1$ [/mm] als auch auf [mm] $g_2$ [/mm] liegen (d.h. die Schnittmenge der beiden Geraden). Wenn die Geraden echt parallel sind, sollte da also die Leeremenge herauskommen (d.h. dann sollte man überhaupt keine Werte [mm] $\lambda, \mu$ [/mm] finden können, so dass [mm] $\vec{p_1}+\lambda\vec{q_1}=\vec{p_2}+\mu\vec{q_2}$); [/mm] andernfalls ist die Schnittmenge eine der beiden Geraden (also für jedes [mm] $\lambda$ [/mm] existiert ein [mm] $\mu$ [/mm] mit [mm] $\vec{p_1}+\lambda\vec{q_1}=\vec{p_2}+\mu\vec{q_2}$; [/mm] und umgekehrt: Für jedes [mm] $\mu$ [/mm] existiert ein [mm] $\lambda$...) [/mm]

Mache Dir ruhig mal Beispiele dazu:
[mm] $$g_1: \vektor{x_1\\x_2\\x_3}=\vektor{1\\2\\3}+\lambda*\vektor{1\\1\\2}$$ [/mm]

[mm] $$g_2: \vektor{x_1\\x_2\\x_3}=\vektor{5\\2\\3}+\mu*\vektor{7\\7\\14}$$ [/mm]

[mm] $$g_3: \vektor{x_1\\x_2\\x_3}=\vektor{3\\4\\7}+\nu*\vektor{-\pi\\-\pi\\-2\pi}$$ [/mm]

In welcher Beziehung stehen diese drei Geraden zueinander?

Gruß,
Marcel

Bezug
                                
Bezug
Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 So 07.12.2008
Autor: Sara

Meiner Berechnung zufolge müssten Gerdae 1 und 2 echt paralell sein, da sie zunächst einmal linear abhängig sind voneinander und beim gleichsetzen das gleichungssystem sich nicht lösen lässt.
Ist es korrekt?


LG
Sara

Bezug
                                        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 So 07.12.2008
Autor: Regenwurm2

Und ja, die beiden Geraden sind echt parallel ;)

Bezug
                                
Bezug
Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 So 07.12.2008
Autor: Regenwurm2

echt parallel oder identisch:
Wenn du dir das 'n bisschen einfacher machen möchtest, dann führe doch einfach eine Punktprobe durch, das erspart dir das Gleichsetzen der zwei Geraden.
Dafür kannst du einfach den Stützvektor A von Gerade A nehmen (ist ja der Ortsvektor eines Punktes von der Geraden und gibt dir somit quasi einen Punkt an) und überprüfen ob der Punkt A auf der Geraden B liegt. Setze also einfach die Koordinaten vom Punkt A in die Geradengleichung B ein. Erhälst du dann bei allen drei Gleichungen den gleichen Parameter liegt der Punkt von Gerade A auch auf Gerade B, d.h. die Geraden sind identisch. Hat das Gleichungssystem keine Lösung, liegt der Punkt A nicht auf Gerade B und die Geraden sind somit echt parallel...

Bezug
                                        
Bezug
Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 So 07.12.2008
Autor: Marcel


> echt parallel oder identisch:
>  Wenn du dir das 'n bisschen einfacher machen möchtest,
> dann führe doch einfach eine Punktprobe durch, das erspart
> dir das Gleichsetzen der zwei Geraden.
> Dafür kannst du einfach den Stützvektor A von Gerade A

Es ist schlecht, eine Gerade und einen Punkt jeweils beide mit A zu bezeichnen!

> nehmen (ist ja der Ortsvektor eines Punktes von der Geraden
> und gibt dir somit quasi einen Punkt an) und überprüfen ob
> der Punkt A auf der Geraden B liegt. Setze also einfach die
> Koordinaten vom Punkt A in die Geradengleichung B ein.
> Erhälst du dann bei allen drei Gleichungen den gleichen
> Parameter liegt der Punkt von Gerade A auch auf Gerade B,
> d.h. die Geraden sind identisch. Hat das Gleichungssystem
> keine Lösung, liegt der Punkt A nicht auf Gerade B und die
> Geraden sind somit echt parallel...

Steht prinzipiell eigentlich auch alles in meinem Beitrag oben...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]