Geraden und Dreiecksfläche < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben seien 2 Punkte P(3/5/-4) und C(7/3/0)
a) Stellen Sie eine Gerade g durch P auf mit dem Richtungsvektor a= (1/-2/-2).
b) Zeigen Sie, dass die Strecke PC senkrecht zur Geraden g ist.
c) Bestimmen Sie zwei Punkte A und B auf der Geraden g, die 3 Einheiten von P entfernt sind.
d) Welche Fläche hat das Dreieck ABC?
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, bin mir so unsicher, ob alles richtig ist, insbesondere weil ich mit glattem Ergebnis gerechnet habe. Wenn mir jemand meine Fehler erklären könnte, wäre ich dankbar. Ferner habe ich den Eindruck, dass einigige meiner Zeilen trivial sind? Wäre nett mir die entsprechend zu benennen. Tausend Dank.
a)
x(t) = 3 + t
y(t) = 5 2t
z(t) = -4 2t
x(t) = P + t[mm] \vec{a} [/mm] [mm] \Rightarrow [/mm] x(t) = (3/5/-4) + t (1/-2/-2)
b) Die Parameterdarstellung der Geraden durch P(3/5/-4) und C(7/3/0) lautet
x(t) = 3 + t(7 - 3)
y(t) = 5 + t(3 - 5)
z(t) = -4 + t(0 + 4)
Die entsprechende Kurzschreibweise mit Vektoren lautet x(t) = P + t(C - P),
also x(t)= [mm] \vektor{ 3\\ 5 \\-4} [/mm] + t [mm] \vektor{ 4\\ -2 \\ 4} [/mm].
Für Orthogonalität ist man gezwungen, sowohl das Skalarprodukt auszurechenen als auch zu überprüfen, ob es überhaupt einen Schnittpunkt gibt. Richtungsvektoren der Geraden sind orthogonal heisst das Skalarprodukt ist null.
1) Schnittpunkt: (3/5/-4) + r (1/-2/-2) = (3/5/-4) + s (4/-2/4)
I r - 4s = 0 [mm] \Rightarrow [/mm] r=4s
II -2r+2s =0 [mm] \Rightarrow [/mm] r = 0, s = 0
III 2r-4s =0
Setzen wir r = 0 und s = 0 in die Gleichung ein, so erhalten wir S(3| 5| -4) als Schnittpunkt.
2) Wenn zwei Geraden senkrecht aufeinanderstehen, dann zeigen sie in verschiedene "Richtungen" mit einem Winkel im Schnittpunkt, der 90° beträgt.
also: [mm] \vec{PC} [/mm] = [mm] \vec{x} [/mm]= (7-3/3-5/0+4)=(4/-2/4)
Richtungsvektor a = (1/-2/-2)
ax = a1x1 + a2x2 + a3x3 = 4 + 4 - 8 = 0 qed.
C) gesucht: zwei Punkte A und B auf der Geraden g: x(t) = (3/5/-4) + t (1/-2/-2), die 3 Einheiten von P(3/5/-4) entfernt sind.
Der Richtungsvektor zu PC b = (4/-2/4) siehe oben, g hat den Richtungsvektor a= (1/-2/-2) . Ein Normalenvektor ist dann:
I x-2y-2z = 0 [mm] \Rightarrow [/mm] x= 2y + 2z in II
II 4x-2y+4z= 0
II ´ 8y + 8z 2y+4z=0
6y +12z =0
y = -2z
Sei z=1 [mm] \Rightarrow [/mm] y=-2 in I ´[mm] \Rightarrow [/mm] x= -4 + 2 = -2
Normalenvektor [mm] \vec{n} [/mm] = (-2/-2/1)
Probe: [mm] \vec{n} [/mm]b = -2*4-(2*-2)+4 =-8+4+4=0 und [mm] \vec{n} [/mm]a= -2-2*(-2)-2 = -2+4-2=0
Hilfsgerade gesucht µ, mit Betrag(µ[mm] \vec{n} [/mm]) = 3
µ [mm] \vec{n} [/mm] = (-2/-2/1)= (-2µ /-2µ /1µ)
[mm] | [/mm]-2µ /-2µ /1µ [mm] | [/mm]= 3, also:
[mm] \wurzel{(-2µ)² +(-2µ)² +µ²} [/mm] = 3 [mm] \Rightarrow [/mm]
[mm] \wurzel{4µ² + 4µ² +µ²} [/mm] = 3
[mm] \wurzel{9µ²} [/mm] = 3 [mm] \Rightarrow [/mm] +-3µ =3 [mm] \Rightarrow [/mm] µ = +-1
[mm] \vec{d1} [/mm] = [mm] \vec{f} [/mm]+ [mm] \vec{n} [/mm] = (3/5/-4) + (-2/-2/1) = (1/3/-3)
[mm] \vec{d2} [/mm] = [mm] \vec{f} [/mm] - [mm] \vec{n} [/mm] = (3/5/-4) - (-2/-2/1) = (5/7/-5)
Lösung: A= (1/3/-3); B = (5/7/-5)
d) Welche Fläche hat das Dreieck A= (1/3/-3); B = (5/7/-5) C(7/3/0)?
[mm] \vec{AB} [/mm] = [mm] \vektor{ 5-1\\7-3\\-5+3} [/mm]= [mm] \vektor{ 4\\ 4 \\-2 } [/mm]
[mm] \vec{AC} [/mm] = [mm] \vektor{ 7-1\\ 3-3 \\0+3} [/mm]= [mm] \vektor{ 6\\ 0\\ 3} [/mm]
Kreuzprodukt: [mm] \vec{A} [/mm] x [mm] \vec{B} [/mm] = [mm] \vektor{ 12-0\\12-12\\0-24} [/mm] = [mm] \vektor{ 12\\ 0 \\-24 } [/mm]
Fläche
= 0,5 * [mm] | [/mm](AB x AC)[mm] | [/mm]
= 0,5* [mm] | [/mm] [mm] \vektor{ 12\\ 0 \\-24 } [/mm] [mm] | [/mm]
= [mm] | [/mm] [mm] \vektor{ 6\\ 0\\ -12 } [/mm] [mm] | [/mm]
= [mm] \wurzel{36 + 0 + 144} [/mm]
= 13,42 [FE]
Lösung: Das Dreieck ABC hat den Flächeninhalt 13,42 [FE]
Gruß Snoopy
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:47 Di 08.05.2007 | Autor: | M.Rex |
Hallo
> Gegeben seien 2 Punkte P(3/5/-4) und C(7/3/0)
> a) Stellen Sie eine Gerade g durch P auf mit dem
> Richtungsvektor a= (1/-2/-2).
> b) Zeigen Sie, dass die Strecke PC senkrecht zur Geraden
> g ist.
> c) Bestimmen Sie zwei Punkte A und B auf der Geraden g,
> die 3 Einheiten von P entfernt sind.
> d) Welche Fläche hat das Dreieck ABC?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo, bin mir so unsicher, ob alles richtig ist,
> insbesondere weil ich mit glattem Ergebnis gerechnet habe.
> Wenn mir jemand meine Fehler erklären könnte, wäre ich
> dankbar. Ferner habe ich den Eindruck, dass einigige meiner
> Zeilen trivial sind? Wäre nett mir die entsprechend zu
> benennen. Tausend Dank.
>
> a)
> x(t) = 3 + t
> y(t) = 5 2t
> z(t) = -4 2t
>
> x(t) = P + t[mm] \vec{a}[/mm] [mm]\Rightarrow[/mm] x(t) = (3/5/-4) + t
> (1/-2/-2)
>
> b) Die Parameterdarstellung der Geraden durch P(3/5/-4) und
> C(7/3/0) lautet
> x(t) = 3 + t(7 - 3)
> y(t) = 5 + t(3 - 5)
> z(t) = -4 + t(0 + 4)
>
> Die entsprechende Kurzschreibweise mit Vektoren lautet x(t)
> = P + t(C - P),
> also x(t)= [mm]\vektor{ 3\\ 5 \\-4}[/mm] + t [mm]\vektor{ 4\\ -2 \\ 4} [/mm].
>
> Für Orthogonalität ist man gezwungen, sowohl das
> Skalarprodukt auszurechenen als auch zu überprüfen, ob es
> überhaupt einen Schnittpunkt gibt. Richtungsvektoren der
> Geraden sind orthogonal heisst das Skalarprodukt ist null.
>
Richtig
> 1) Schnittpunkt: (3/5/-4) + r (1/-2/-2) = (3/5/-4) + s
> (4/-2/4)
> I r -
> 4s = 0 [mm]\Rightarrow[/mm] r=4s
> II -2r+2s
> =0 [mm]\Rightarrow[/mm] r = 0, s = 0
> III 2r-4s
> =0
> Setzen wir r = 0 und s = 0 in die Gleichung ein, so
> erhalten wir S(3| 5| -4) als Schnittpunkt.
>
Korrekt
> 2) Wenn zwei Geraden senkrecht aufeinanderstehen, dann
> zeigen sie in verschiedene "Richtungen" mit einem Winkel im
> Schnittpunkt, der 90° beträgt.
> also: [mm]\vec{PC}[/mm] = [mm]\vec{x} [/mm]= (7-3/3-5/0+4)=(4/-2/4)
> Richtungsvektor a = (1/-2/-2)
> ax = a1x1 + a2x2 + a3x3 = 4 + 4 -
> 8 = 0 qed.
>
Auch richtig
>
> C) gesucht: zwei Punkte A und B auf der Geraden g: x(t) =
> (3/5/-4) + t (1/-2/-2), die 3 Einheiten von P(3/5/-4)
> entfernt sind.
> Der Richtungsvektor zu PC b = (4/-2/4) siehe oben, g hat
> den Richtungsvektor a= (1/-2/-2) . Ein Normalenvektor ist
> dann:
> I x-2y-2z = 0 [mm]\Rightarrow[/mm] x= 2y + 2z in II
> II 4x-2y+4z= 0
> II ´ 8y + 8z 2y+4z=0
> 6y +12z =0
> y = -2z
>
> Sei z=1 [mm]\Rightarrow[/mm] y=-2 in I ´[mm] \Rightarrow[/mm] x= -4 + 2 = -2
>
> Normalenvektor [mm]\vec{n}[/mm] = (-2/-2/1)
>
> Probe: [mm]\vec{n} [/mm]b = -2*4-(2*-2)+4 =-8+4+4=0 und [mm]\vec{n} [/mm]a=
> -2-2*(-2)-2 = -2+4-2=0
>
Richtig, aber es geht auch einfacher: Hast du zwei Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] gegeben, und willst einen Vektor [mm] \vec{n} [/mm] haben, der senkrecht auf beiden ist, kannst du auch das Kreuzprodukt nehmen. Dann gilt: [mm] \vec{n}=\vec{a}\times\vec{b}
[/mm]
> Hilfsgerade gesucht µ, mit Betrag(µ[mm] \vec{n} [/mm]) = 3
>
> µ [mm]\vec{n}[/mm] = (-2/-2/1)= (-2µ /-2µ /1µ)
>
> [mm]| [/mm]-2µ /-2µ /1µ [mm]| [/mm]= 3, also:
>
> [mm]\wurzel{(-2µ)² +(-2µ)² +µ²}[/mm] = 3 [mm]\Rightarrow[/mm]
> [mm]\wurzel{4µ² + 4µ² +µ²}[/mm] = 3
> [mm]\wurzel{9µ²}[/mm] = 3 [mm]\Rightarrow[/mm] +-3µ =3 [mm]\Rightarrow[/mm] µ = +-1
>
Korrekt.
> [mm]\vec{d1}[/mm] = [mm]\vec{f} [/mm]+ [mm]\vec{n}[/mm] = (3/5/-4) + (-2/-2/1) =
> (1/3/-3)
> [mm]\vec{d2}[/mm] = [mm]\vec{f}[/mm] - [mm]\vec{n}[/mm] = (3/5/-4) - (-2/-2/1) =
> (5/7/-5)
>
> Lösung: A= (1/3/-3); B = (5/7/-5)
Super.
>
> d) Welche Fläche hat das Dreieck A= (1/3/-3); B = (5/7/-5)
> C(7/3/0)?
>
> [mm]\vec{AB}[/mm] = [mm]\vektor{ 5-1\\7-3\\-5+3} [/mm]= [mm]\vektor{ 4\\ 4 \\-2 }[/mm]
>
> [mm]\vec{AC}[/mm] = [mm]\vektor{ 7-1\\ 3-3 \\0+3} [/mm]= [mm]\vektor{ 6\\ 0\\ 3}[/mm]
>
> Kreuzprodukt: [mm]\vec{A}[/mm] x [mm]\vec{B}[/mm] = [mm]\vektor{ 12-0\\12-12\\0-24}[/mm]
> = [mm]\vektor{ 12\\ 0 \\-24 }[/mm]
> Fläche
> = 0,5 * [mm]| [/mm](AB x AC)[mm] |[/mm]
> = 0,5* [mm]|[/mm] [mm]\vektor{ 12\\ 0 \\-24 }[/mm] [mm]|[/mm]
> = [mm]|[/mm] [mm]\vektor{ 6\\ 0\\ -12 }[/mm] [mm]|[/mm]
>
> = [mm]\wurzel{36 + 0 + 144}[/mm]
> = 13,42 [FE]
>
> Lösung: Das Dreieck ABC hat den Flächeninhalt 13,42 [FE]
>
Das sieht sehr gut aus.
> Gruß Snoopy
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:18 Di 08.05.2007 | Autor: | Snoopymaus |
Hallo Marius,
tausend Dank, ich dachte ich hätte mich vertan, weil sonst überall glatte Ergebnisse herauskamen
Gruß Snoopy
|
|
|
|