www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden und Ebenen
Geraden und Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden und Ebenen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:49 Mo 01.05.2006
Autor: AnnaKuban88

Aufgabe

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe morgen eine sehr wichtige Klassenarbeit und es wäre sehr nett von euch wenn ihr mir helfen könntet.

Nach meinen Überlegungen müsste der Stützvektor, also (2; 7; 3) dann für die neue Gerade h der Richtungsvektor sein.

also müsste h heißen

h: x-> = (2; 7; 3)

stimmt das?


Ich danke euch schonmal im Vorraus, für jeden möglichen Lösungsansatz.


Gruß,

Anna

Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Anhang Nr. 2 (Typ: GIF) [nicht öffentlich]
        
Bezug
Geraden und Ebenen: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:23 Mo 01.05.2006
Autor: Loddar

Hallo Anna!


Der genannte Punkt kann ja (auch gemäß Skizze) nicht Bestandteil der gesuchten Gerade $h_$ sein.

Du musst hier zunächst die Ebenengleichung $E_$ aus den drei gegebenen Punkten aufstellen und anschließend mit der Geradengleichung von [mm] $g_a$ [/mm] gleichsetzen / einsetzen.


Wie lautet denn die Ebenengleichung?


Gruß
Loddar


Bezug
                
Bezug
Geraden und Ebenen: Ebenengleichung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:42 Mo 01.05.2006
Autor: AnnaKuban88

Hallo,

die Ebenengleichung lautet:

E: x-> = (1; 0; 2) + r* (2; 0; 3) + s* (0; 2; 2)


Stimmt das so?

Gruß

Anna

Bezug
                        
Bezug
Geraden und Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mo 01.05.2006
Autor: Cultive

die ebengleichung musst du bestimmen, indem du einen punkt nach wahl als stützvektor nimmst und dann zwei richtungsvektoren bildest, dass heißt: z.b. PQ oder QR oder PR. Jedenfalls um die zu bilden musst immer den hinteren vom vorderen subtrahieren, also z.b. beim Richtungsvektor PQ: Q-P.
Mögliche ebenengleichungen wäre: P als stützvektor und PQ und QR als Stützvektoren.

Das ergibt: (1 0 2) + r (1 0 1) + s (-2 2 -1).

Um dann die Aufgabe weiter zu lösen, ist es sinnvoll die Ebene in Koordinatengleichung zu setzen und dann g koordinatenweise einzusetzen.
Dann löst du diese Gleichung nach t auf und setzt sie in g ein. nun hast du den schnittpunkt von g und E.
Dieser ist gleichzeitig ein möglicher Stützvektor der geraden h.

gruß marvin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]