Hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:23 Fr 06.07.2007 | Autor: | Engel205 |
Hallo ihr Lieben, ich bin fleißig am lernen, weil ich am Montag eine Klausur in LinA 2 schreibe. Dabei bin ich über unsere Probeklausur gestolpert und mir ist eine Aufgabe aufgefallen...
Führen sie für die reelle symmetrische Matrix [mm] \pmat{ 1 & \wurzel{3} & 0 \\ \wurzel{3} & -1 & 0 \\ 0 & 0 & 1 }
[/mm]
eine Hauptachsentransformation durch, das heißt, bestimmen sie eine Matrix T aus O(3) (orthogonale Gruppe), deren Spalten Eigenvektoren von A sind. Geben sie auch [mm] T^{-1}AT [/mm] an.
So wie mache ich das jetzt? Muss ich Eigenvektoren der Matrix bestimmen oder muss ich sie invertieren?
Bin grad ein wenig durcheinander, zu viel im Kopf....
Hoffe ihr könnt mir helfen.
Lieben Gruß und danke schonmal!
|
|
|
|
> Hallo ihr Lieben, ich bin fleißig am lernen, weil ich am
> Montag eine Klausur in LinA 2 schreibe. Dabei bin ich über
> unsere Probeklausur gestolpert und mir ist eine Aufgabe
> aufgefallen...
>
> Führen sie für die reelle symmetrische Matrix [mm]\pmat{ 1 & \wurzel{3} & 0 \\ \wurzel{3} & -1 & 0 \\ 0 & 0 & 1 }[/mm]
>
> eine Hauptachsentransformation durch, das heißt, bestimmen
> sie eine Matrix T aus O(3) (orthogonale Gruppe), deren
> Spalten Eigenvektoren von A sind. Geben sie auch [mm]T^{-1}AT[/mm]
> an.
>
> So wie mache ich das jetzt?
Lass Dich von der Aufgabenstellung führen: bestimme also zunächst drei (linear unabhängige) Eigenvektoren von $A$ (da die Matrix symmetrisch ist, wird dies sicher möglich sein). Der Eigenvektor zum Eigenwert 1 ist direkt aus der Matrix ablesbar. Dann hat $A$ noch die weiteren Eigenwerte 2 und -2 mit je dazugehörigen Eigenvektoren.
> Muss ich Eigenvektoren der Matrix bestimmen
Ja, siehe oben. Dann verwendest Du, genau so, wie dies in der Aufgabenstellung steht, diese drei Eigenvektoren als Spalten einer Basistransformationsmatrix $T$.
> oder muss ich sie invertieren?
Invertieren musst Du nicht die Matrix $A$ sondern die Matrix $T$. Genauer, Du musst wieder nur genau das machen, was ja in der Aufgabenstellung ausdrücklich geschrieben wird: Du musst [mm] $T^{-1}AT$ [/mm] berechnen. Zur Kontrolle: In der Diagonalen der so transformierten Matrix müssen die drei Eigenwerte (2,-2 und 1) stehen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:15 Sa 07.07.2007 | Autor: | Engel205 |
Super ok danke so hätte ich das auch gemacht.
|
|
|
|