Hölder-Ungleichung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Prüfe, ob die Hölder-Ungleichung auch für [mm] p=\bruch{3}{4} [/mm] und alle Funktionen [mm] f,g\inP([a,b]) [/mm] mit f [mm] \ge [/mm] c > 0, g [mm] \ge [/mm] c > 0 auf [a,b] gilt:
[mm] |\integral_{a}^{b}{fg}|\le(\integral_{a}^{b}{|f|^{p}})^{\bruch{1}{p}}(\integral_{a}^{b}{|g|^{p}})^{\bruch{1}{q}}
[/mm]
wobei [mm] q:=(1-\bruch{1}{p})^{-1}. [/mm] |
Guten Tag!
Zuerst einmal muss ich entscheiden, ob die Hölder-Ungleichung für p=3/4 gilt. Ich weiß jedoch nicht, über welches mathematische Verfahren ich dies erledigen kann. Möglicherweise kann ich auch einfach durch einen Widerspruchsbeweis zeigen, dass die Ungleichung in diesem speziellen Fall nicht gilt?
Über einen Denkanstoß von Eurer Seite würde ich mich sehr freuen!
Besten Dank!
mathe_thommy
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:54 So 13.12.2015 | Autor: | Ladon |
Denkanstoß: Wenn du vermutest, dass die Ungleichung für [mm] $p=\frac{3}{4}<1$ [/mm] nicht gilt, solltest du versuchen ein Gegenbeispiel anzugeben.
LG
Ladon
|
|
|
|
|
Guten Abend!
Vielen Dank für die Hilfe!
Ich habe nun versucht, die Werte in die Ungleichung einzusetzen. Aus
[mm] p=\bruch{3}{4} [/mm]
erhalte ich dementsprechend
[mm] q=(1-\bruch{1}{\bruch{3}{4}})^{-1}=-3
[/mm]
In die Hölder-Ungleichung eingesetzt ergibt das:
[mm] |\integral_{a}^{b}{fg dx}| \le (\integral_{a}^{b}{|f|^{\bruch{3}{4}} dx})^{\bruch{4}{3}}*(\integral_{a}^{b}{|g|^{-3} dx})^{-\bruch{1}{3}}
[/mm]
Wie kann ich an dieser Stelle weiter vorgehen? Ist es mir erlaubt, die äußeren Exponenten in die Klammern zu ziehen und mit den dortigen Exponenten zu multiplizieren, sodass jeweils eine 1 im Exponent steht?
Wie komme ich von hier auf einen Widerspruch?
Beste Grüße
mathe_thommy
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:44 So 13.12.2015 | Autor: | fred97 |
> Guten Abend!
> Vielen Dank für die Hilfe!
> Ich habe nun versucht, die Werte in die Ungleichung
> einzusetzen. Aus
> [mm]p=\bruch{3}{4}[/mm]
> erhalte ich dementsprechend
> [mm]q=(1-\bruch{1}{\bruch{3}{4}})^{-1}=-3[/mm]
>
> In die Hölder-Ungleichung eingesetzt ergibt das:
> [mm]|\integral_{a}^{b}{fg dx}| \le (\integral_{a}^{b}{|f|^{\bruch{3}{4}} dx})^{\bruch{4}{3}}*(\integral_{a}^{b}{|g|^{-3} dx})^{-\bruch{1}{3}}[/mm]
>
> Wie kann ich an dieser Stelle weiter vorgehen? Ist es mir
> erlaubt, die äußeren Exponenten in die Klammern zu ziehen
> und mit den dortigen Exponenten zu multiplizieren, sodass
> jeweils eine 1 im Exponent steht?
Nein,überlege warum
> Wie komme ich von hier auf einen Widerspruch?
Gegenbeispiel suchen
Fred
>
> Beste Grüße
> mathe_thommy
|
|
|
|
|
Danke für deine Antwort, Fred!
Meinen vorgeschlagenen Rechenschritte darf ich vermutlich nicht durchführen, da der Exponent das gesamte Integral umschließt und sich damit nicht nur auf die Funktion f bzw. g bezieht.
Als Gegenbeispiel wurde uns gesagt, dass wir uns auf die Suche nach einer passenden Treppenfunktion begeben sollen. Was ist damit gemeint? In meinen Nachschlagewerken finde ich keine hilfreiche Definition.
Besten Dank!
mathe_thommy
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:55 Mo 14.12.2015 | Autor: | fred97 |
> Danke für deine Antwort, Fred!
>
> Meinen vorgeschlagenen Rechenschritte darf ich vermutlich
> nicht durchführen, da der Exponent das gesamte Integral
> umschließt und sich damit nicht nur auf die Funktion f
> bzw. g bezieht.
So ist es.
>
> Als Gegenbeispiel wurde uns gesagt, dass wir uns auf die
> Suche nach einer passenden Treppenfunktion begeben sollen.
> Was ist damit gemeint? In meinen Nachschlagewerken finde
> ich keine hilfreiche Definition.
Google ist auch Dein Freund !!!
FRED
>
> Besten Dank!
> mathe_thommy
|
|
|
|
|
Guten Abend!
Ich habe mir jetzt im Internet mehrere Definitionen von Treppenfunktionen angesehen. So wie ich das verstehe, sind damit Funktionen gemeint, die sozusagen aus vielen "Konstanten" zusammengesetzt werden, zwischen denen Sprünge unterschiedlichster Art entstehen können.
Die Bestimmung und Berechnung der Integrale erscheint mir hierbei besonders einfach, da man stets rechteckige/quadratische Flächen betrachtet.
Mir ist bisher jedoch noch nicht klar geworden, wie ich die Eigenschaften einer Treppenfunktion ausnutzen kann, um einen Widerspruchsbeweis anzuführen - könnte mir da bitte jemand helfen?
Beste Grüße und noch einen angenehmen Abend!
mathe_thommy
|
|
|
|
|
Besten Dank für den Tipp!
Ich habe in meinen Mitschriften unter anderem die "Heavyside"-Funktion gefunden. Wähle ich diese als f und g mit g(x)=x, dann ist die Ungleichung auf dem Intervall [1,2] (dieses darf ich doch auch frei wählen, oder?) nicht erfüllt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:49 Di 15.12.2015 | Autor: | fred97 |
> Besten Dank für den Tipp!
>
> Ich habe in meinen Mitschriften unter anderem die
> "Heavyside"-Funktion gefunden. Wähle ich diese als f und g
> mit g(x)=x, dann ist die Ungleichung auf dem Intervall
> [1,2]
> (dieses darf ich doch auch frei wählen, oder?)
Klar.
> nicht
> erfüllt.
Na also
FRED
|
|
|
|