Integral über z konjugiert < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Das Kurvenintegral in der reellen Analysis ist durch [mm] \integral_{\gamma}^{}{f(x,y) dx + g(x,y) dy} [/mm] := [mm] \integral_{t_{0}}^{t_{1}}{f(x(t),y(t))x'(t)+ g(x(t),y(t))y'(t) dt} [/mm] für stetige Funktionen f und g auf U [mm] \subseteq \IR^{2} [/mm] und eine stetig diff'bare Kurve [mm] \gamma: [t_{0},t_{1}] \to [/mm] U gegeben, wobei [mm] \gamma(t)=:(x(t),y(t)) [/mm] ist. Weiter gilt für geschlossene Kurven [mm] F(\gamma) [/mm] := [mm] \integral_{\gamma}^{}{x dy} [/mm] der von [mm] \gamma [/mm] umlaufene Flächeninhalt. Was bedeutet folglich das Kurvenintegral [mm] \integral_{\gamma}^{}{\overline{z} dz} [/mm] für eine geschlossene Kurbe in [mm] \IC [/mm] ? |
Hallo,
ich bin bei der Aufgabe so vorgegangen, bin mir aber unsicher: Für z=u+iv ist
[mm] \integral_{\gamma}^{}{\overline{z} dz}= \integral_{\gamma}^{}{u-iv dz} [/mm] = [mm] \integral_{t_{0}}^{t_{1}}{u(t)dt}+i \integral_{t_{0}}^{t_{1}}{v(t) dt}. [/mm] Stimmt das so?
Was bedeutet aber dieses Intergal für eine geschlossene Kurve in [mm] \IC? [/mm] Kann mir da bitte jemand weiterhelfen? Ich verstehe nicht, was damit gemeint sein soll.
Vielen Dank!
Milka
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:21 Mi 02.05.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|