Inverse characteristic funct. < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:54 Sa 03.09.2016 | Autor: | Hejo |
Aufgabe | Ich würde gerne die charakteristische Funktion der Standardnormalverteilung [mm] \phi_X(t)=e^{-\bruch{t^2}{2}} [/mm] zurücktransformieren, sodass ich f(x) erhalte. |
[mm] f(x)=\bruch{1}{2\pi}\integral_{-\infty}^{\infty}{e^{-itx}e^{-\bruch{t^2}{2}}dt}
[/mm]
An der Stelle komme ich nicht weiter.
Grüße Hejo
|
|
|
|
Hiho,
für die Rücktransformation muss es $ [mm] f(x)=\bruch{1}{2\pi}\integral_{-\infty}^{\infty}{e^{-itx}e^{-\bruch{t^2}{2}}dt} [/mm] $ heißen, ändert aber an dem Weg nix: nutze Rechenregeln der e-Funktion und erweitere die Potenz dann so, dass du eine binomische Formel anwenden kannst.
Gruß,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:52 So 04.09.2016 | Autor: | Hejo |
Hey, also
[mm] f(x)=\bruch{1}{2\pi}\integral_{-\infty}^{\infty}{e^{\bruch{x^2}{2}}e^{-\bruch{x^2}{2}}e^{-itx}e^{-\bruch{t^2}{2}}dt}=\bruch{1}{2\pi}e^{-\bruch{x^2}{2}}\integral_{-\infty}^{\infty}{e^{\bruch{x^2}{2}}e^{-itx}e^{-\bruch{t^2}{2}}dt}=\bruch{1}{2\pi}e^{-\bruch{x^2}{2}}\integral_{-\infty}^{\infty}{e^{\bruch{x^2}{2}{-itx}{-\bruch{t^2}{2}}}dt}
[/mm]
[mm] \bruch{x^2}{2}{-itx}{-\bruch{t^2}{2}}=-\bruch{1}{2}(t+ix)^2, [/mm] hier substituieren mit s=t+ix, dann ist [mm] \bruch{ds}{dt}=1. [/mm] also...
[mm] f(x)=\bruch{1}{2\pi}e^{-\bruch{x^2}{2}}\integral_{-\infty+ix}^{\infty+ix}{e^{-\bruch{s^2}{2}}ds}
[/mm]
[mm] \oint{e^{-\bruch{s^2}{2}}ds}=0, [/mm] d.h.
[mm] \integral_{\alpha}^{\alpha+ix}{e^{-\bruch{s^2}{2}}ds}+\integral_{\alpha+ix}^{-\alpha+ix}{e^{-\bruch{s^2}{2}}ds}+\integral_{-\alpha+ix}^{-\alpha}{e^{-\bruch{s^2}{2}}ds}\integral_{-\alpha}^{\alpha}{e^{-\bruch{s^2}{2}}ds}=0 [/mm] wobei [mm] \limes_{\alpha\rightarrow\infty}\integral_{-\alpha}^{\alpha}{e^{-\bruch{s^2}{2}}ds}=\wurzel{2\pi}
[/mm]
jetzt muss ich nur noch
[mm] \limes_{\alpha\rightarrow\infty}\integral_{\alpha}^{\alpha+ix}{e^{-\bruch{s^2}{2}}ds}, [/mm] und [mm] \limes_{\alpha\rightarrow\infty}\integral_{-\alpha+ix}^{-\alpha}{e^{-\bruch{s^2}{2}}ds} [/mm] ausrechnen um [mm] \limes_{\alpha\rightarrow\infty}\integral_{\alpha+ix}^{-\alpha+ix}{e^{-\bruch{s^2}{2}}ds} [/mm] zu erhalten und da komme ich nicht weiter
Gruß Hejo
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:02 Mo 05.09.2016 | Autor: | Chris84 |
Huhu,
das ist immer so ein Kreuz mit komplexen Integralen und vor allem mit komplexen Grenzen. Die Idee, ein Rechteck in der komplexen Zahlenebene zu betrachten, ist gut, aber ich wuerde das eher anders angehen. (Von deiner Ausfuehrung schliesse ich darauf, dass dir komplexe Wegintegrale bekannt sind.) Ich mag komplexe Grenzen nicht so, schon gar nicht im Unendlichen.
Ich definiere [mm] $f(z):=e^{-\frac{z^2}{2}}$ [/mm] und vier Wege, naemlich
[mm] $\gamma_1(t):=t, t\in [/mm] [-a;a]$
[mm] $\gamma_2(t):=a+itx, t\in[0;1]$
[/mm]
[mm] $\gamma_3(t):=t+ix, t\in [/mm] [a;-a]$
[mm] $\gamma_4(t):= [/mm] -a+itx, [mm] t\in [/mm] [1;0]$
sowie [mm] $\gamma(t):=\sum\limits_{j=1}^4 \gamma_j [/mm] (t)$.
Dann ist offensichtlich [mm] $\int\limits_{\gamma} [/mm] f(z) dz=0$. (Das ist genau, was du geschrieben hast!)
Schreibt man das Kurvenintegral aus und verwendet die Definition des komplexen Kurvenintegrals, bekommt man
[mm] $0=\int\limits_{-a}^a e^{-\frac{t^2}{2}} [/mm] dt [mm] +\int\limits_{0}^1 e^{-\frac{(a+itx)^2}{2}} [/mm] dt + [mm] \int\limits_{a}^{-a} e^{-\frac{(t+ix)^2}{2}} [/mm] dt [mm] +\int\limits_{1}^0 e^{-\frac{(-a+itx)^2}{2}} [/mm] dt$
Das erste Integral ist bekannt (hast du ja auch schon geschrieben); das dritte Integral ist im Wesentlichen (einmal Grenzen umdrehen -> Minuszeichen) das Integral, welches du berechnen moechtest.
Fuer das zweite und vierte Integral kannst du im Wesentlichen benutzen, dass (ich lasse die festen! Grenzen weg)
[mm] $|\int e^{-\frac{(a+itx)^2}{2}} [/mm] dt | = [mm] |\int e^{-\frac{a^2}{2}} e^{-itx} e^{\frac{t^2x^2}{2}} [/mm] dt| [mm] \le \int |e^{-\frac{a^2}{2}} e^{-itx} e^{\frac{t^2x^2}{2}}| [/mm] dt = [mm] \int e^{-\frac{a^2}{2}} e^{\frac{t^2x^2}{2}} [/mm] dt [mm] \rightarrow [/mm] 0$ fuer [mm] $a\rightarrow \infty$.
[/mm]
Gruss,
Chris
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:37 Mo 05.09.2016 | Autor: | Hejo |
Vielen Dank! Das war sehr hilfreich
Jetzt konnte ich endlich die Dichtefunktion der Standartnormalverteilung herleiten, indem ich die Summe von iid Zufallsvariablen untersucht habe.
Gruß Hejo
|
|
|
|