Isomorphismus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:40 Do 29.12.2011 | Autor: | sissile |
1Wenn eine Abbildung linear ist, ist dann die Umkehrabbildung auch linear?
2Wie bilde ich eine Umkehrabbildung?
z.B [mm] \phi \vektor{x \\ y} [/mm] := [mm] \vektor{x +y\\y}
[/mm]
3 Wie weiß ich ob Abbildungen eine Bijektion sind ? Wenn man eine Umkehrabbildung machen kann sind sie doch automatisch Bijektiv oder?
z.B [mm] \phi \vektor{x \\ y} [/mm] := [mm] \vektor{x +y\\ y}
[/mm]
[mm] \lambda \vektor{x \\ y} [/mm] := [mm] \vektor{x \\ x+ y}
[/mm]
Das BSP. konkret lautet:
Sei [mm] \IK [/mm] ein Körper. Betrachte die beieden Abbildungen
[mm] \phi \IK^2->\IK^2,\phi \vektor{x \\ y} [/mm] := [mm] \vektor{x +y\\y}
[/mm]
und
[mm] \lambda: \IK^2->\IK^2,\lambda \vektor{x \\ y} [/mm] := [mm] \vektor{x \\ x+ y}.
[/mm]
Zeige, dass [mm] \phi [/mm] und [mm] \lambda [/mm] beide lineare Isomorphismen sind.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:52 Do 29.12.2011 | Autor: | Lippel |
Nabend,
> 1Wenn eine Abbildung linear ist, ist dann die
> Umkehrabbildung auch linear?
Falls sie existiert, dann ist sie linear. Sie existiert aber nur dann, wenn die betrachtete Abbildung bijektiv (d.h. injektiv und surjektiv) ist.
> 2Wie bilde ich eine Umkehrabbildung?
> z.B [mm]\phi \vektor{x \\ y}[/mm] := [mm]\vektor{x +y\\y}[/mm]
Die Abbildung [mm] $\phi$ [/mm] ist bijektiv, daher existiert eine Umkehrabbildung, ich nenne sie mal [mm] $\psi$. [/mm] Nun ist [mm] $\psi$ [/mm] eine Abbildung [mm] $\IR^2 \to \IR^2$. [/mm] Nehme dir [mm] $\vektor{a \\ b} \in \IR^2$. [/mm] Um [mm] $\psi(\vektor{a \\ b})$ [/mm] zu bestimmen, müssen wir des Vektors Urbild unter [mm] $\phi$ [/mm] berechnen. Sei [mm] $\vektor{x \\ y}$ [/mm] dieses Urbild (es existiert und ist eindeutig, da [mm] $\phi$ [/mm] bijektiv ist), dann gilt
[mm] $\phi(\vektor{x \\ y}) [/mm] = [mm] \vektor{a \\ b}$
[/mm]
[mm] $\Rightarrow \vektor{x +y\\y} [/mm] = [mm] \vektor{a \\ b}$
[/mm]
[mm] $\Rightarrow [/mm] y=b$ und $x=a-b$.
Also ist [mm] $\psi(\vektor{a\\b})=\vektor{a-b\\b}$, [/mm] da [mm] $\phi(\vektor{a-b\\b})=\vektor{a\\b}$. [/mm] Somit ist [mm] $\psi$ [/mm] bestimmt.
> 3 Wie weiß ich ob Abbildungen eine Bijektion sind ? Wenn
> man eine Umkehrabbildung machen kann sind sie doch
> automatisch Bijektiv oder?
Ja, wenn eine Umkehrabbildung existiert, dann ist die Abbildung bijektiv. Alternativ kannst du prüfen, ob die Funktion injektiv und surjektiv ist.
Grüße, Lippel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:14 Do 29.12.2011 | Autor: | sissile |
Ich danke dir schon mal herzlich, für die ausführliche, gut verständliche Antwort.
Hast du vlt. ein Bsp für eine Abbildung, bei der keine Umkehrabbildung existiert? So könnte ich mir das vlt. etwas besser vorstellen!
Das heißt um linearen Isomorphismus zu zeigen muss ich:
> Zeigen dass die Abbildung linear ist
> Umkehrabbildung bilden
?
LG
|
|
|
|
|
Hallo sissile,
> Ich danke dir schon mal herzlich, für die ausführliche,
> gut verständliche Antwort.
>
> Hast du vlt. ein Bsp für eine Abbildung, bei der keine
> Umkehrabbildung existiert? So könnte ich mir das vlt.
> etwas besser vorstellen!
Wie wäre es mit [mm]\varphi:\IR^2\to\IR^2, \vektor{x\\
y}\mapsto \vektor{x-y\\
x-y}[/mm]
Diese Abbildung ist linear. Warum?
Ist sie bijektiv?
>
> Das heißt um linearen Isomorphismus zu zeigen muss ich:
> > Zeigen dass die Abbildung linear ist
> > Umkehrabbildung bilden
> ?
Das ist doch kein Satz! Wer soll dem Gekrickel einen Sinn entnehmen??
Ein Isomorphismus ist ein bijektiver Homomorphismus.
Du musst also zeigen, dass die Abbildung
1) ein Homomorphismus
und
2) bijektiv, dh. injektiv und surjektiv
ist.
>
>
> LG
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:49 Do 29.12.2011 | Autor: | sissile |
>Wie wäre es mit $ [mm] \varphi:\IR^2\to\IR^2, \vektor{x\\ y}\mapsto \vektor{x-y\\ x-y} [/mm] $
> Diese Abbildung ist linear. Warum?
Ja ist Sie. [mm] \phi (\vektor{x_1+x_2 \\ y_1+y_2} [/mm] ) [mm] =\phi( \vektor{x_1 \\ y_1}) [/mm] + [mm] \phi [/mm] ( [mm] \vektor{x_2 \\ y_2})
[/mm]
und [mm] \lambda [/mm] * [mm] \phi [/mm] ( [mm] \vektor{x \\ y}) [/mm] = [mm] \phi [/mm] ( [mm] \lambda [/mm] * [mm] \vektor{x \\ y})
[/mm]
(Kurzform)
>Ist sie bijektiv?
Ich hab versucht eine Umkehrabbildung zu bilden, durch die Erklärung von Lippel.
[mm] \phi [/mm] ( [mm] \vektor{x \\ y}) [/mm] = [mm] \vektor{a \\ b}
[/mm]
[mm] \vektor{a \\ b} [/mm] = [mm] \vektor{x-y\\ x-y}
[/mm]
x= a+y
y= -b +x
Ich kann x und y nicht nur mit a und b ausdrücken.
Aufgabe: Zeige Isomorphismus.
Plan:
-Linearität
-Umkehrabbildung bilden.
Durch die Bildung der Umkehrabbildung hab ich die Bijektion ja gezeigt. Und wenn die Abbildung linear ist, ist auch die Umkehrabbildung linear.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:00 Do 29.12.2011 | Autor: | fred97 |
> >Wie wäre es mit [mm]\varphi:\IR^2\to\IR^2, \vektor{x\\ y}\mapsto \vektor{x-y\\ x-y}[/mm]
>
> > Diese Abbildung ist linear. Warum?
> Ja ist Sie. [mm]\phi (\vektor{x_1+x_2 \\ y_1+y_2}[/mm] ) [mm]=\phi( \vektor{x_1 \\ y_1})[/mm]
> + [mm]\phi[/mm] ( [mm]\vektor{x_2 \\ y_2})[/mm]
> und [mm]\lambda[/mm] * [mm]\phi[/mm] (
> [mm]\vektor{x \\ y})[/mm] = [mm]\phi[/mm] ( [mm]\lambda[/mm] * [mm]\vektor{x \\ y})[/mm]
>
> (Kurzform)
??? Kurzform ? Gezeigt hast Du nix ! Du hast nur die Bed. für Linearität hingeschrieben.
> >Ist sie bijektiv?
>
> Ich hab versucht eine Umkehrabbildung zu bilden, durch die
> Erklärung von Lippel.
> [mm]\phi[/mm] ( [mm]\vektor{x \\ y})[/mm] = [mm]\vektor{a \\ b}[/mm]
> [mm]\vektor{a \\ b}[/mm]
> = [mm]\vektor{x-y\\ x-y}[/mm]
> x= a+y
> y= -b +x
> Ich kann x und y nicht nur mit a und b ausdrücken.
Es ist doch [mm] \phi(\vektor{x \\ x})=\vektor{0 \\ 0} [/mm] für jedes x !
Damit ist nix mit Umkehrabb.
FRED
>
>
> Aufgabe: Zeige Isomorphismus.
> Plan:
> -Linearität
> -Umkehrabbildung bilden.
> Durch die Bildung der Umkehrabbildung hab ich die
> Bijektion ja gezeigt. Und wenn die Abbildung linear ist,
> ist auch die Umkehrabbildung linear.
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:06 Do 29.12.2011 | Autor: | sissile |
> > >Wie wäre es mit [mm]\varphi:\IR^2\to\IR^2, \vektor{x\\ y}\mapsto \vektor{x-y\\ x-y}[/mm]
> ??? Kurzform ? Gezeigt hast Du nix ! Du hast nur die Bed.
> für Linearität hingeschrieben.
Ja das zu zeigen ist ja jetzt auch keine Schwierigkeit für mich. Die beiden Bedingungen gelten für die Abbildung. Punkt.
>
> > >Ist sie bijektiv?
> >
> > Ich hab versucht eine Umkehrabbildung zu bilden, durch die
> > Erklärung von Lippel.
> > [mm]\phi[/mm] ( [mm]\vektor{x \\ y})[/mm] = [mm]\vektor{a \\ b}[/mm]
> >
> [mm]\vektor{a \\ b}[/mm]
> > = [mm]\vektor{x-y\\ x-y}[/mm]
> > x= a+y
> > y= -b +x
> > Ich kann x und y nicht nur mit a und b ausdrücken.
>
> Es ist doch [mm]\phi(\vektor{x \\ x})=\vektor{0 \\ 0}[/mm] für
> jedes x !
>
> Damit ist nix mit Umkehrabb.
Das verstehe ich nicht, hier ist der Knackpunkt. Wie erkennst du, dass es keine Umkehrabbildung gibt?
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:08 Do 29.12.2011 | Autor: | fred97 |
> > > >Wie wäre es mit [mm]\varphi:\IR^2\to\IR^2, \vektor{x\\ y}\mapsto \vektor{x-y\\ x-y}[/mm]
>
> > ??? Kurzform ? Gezeigt hast Du nix ! Du hast nur die Bed.
> > für Linearität hingeschrieben.
> Ja das zu zeigen ist ja jetzt auch keine Schwierigkeit
> für mich. Die beiden Bedingungen gelten für die
> Abbildung. Punkt.
> >
> > > >Ist sie bijektiv?
> > >
> > > Ich hab versucht eine Umkehrabbildung zu bilden, durch die
> > > Erklärung von Lippel.
> > > [mm]\phi[/mm] ( [mm]\vektor{x \\ y})[/mm] = [mm]\vektor{a \\ b}[/mm]
> > >
> > [mm]\vektor{a \\ b}[/mm]
> > > = [mm]\vektor{x-y\\ x-y}[/mm]
> > > x= a+y
> > > y= -b +x
> > > Ich kann x und y nicht nur mit a und b ausdrücken.
> >
> > Es ist doch [mm]\phi(\vektor{x \\ x})=\vektor{0 \\ 0}[/mm] für
> > jedes x !
> >
> > Damit ist nix mit Umkehrabb.
> Das verstehe ich nicht, hier ist der Knackpunkt. Wie
> erkennst du, dass es keine Umkehrabbildung gibt?
[mm] \phi [/mm] ist nicht injektiv.
FRED
>
> Liebe Grüße
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:14 Do 29.12.2011 | Autor: | sissile |
Ah okay .
Kann mir vlt. noch wer eine Seite empfehlen, wo ich soetwas wie einen Plan finde, wie ich einen Isomorphismus zeige?
Weil mir ist auch nicht ganz klar, wie ich einen Homomorphismus zeige!
Vielen lieben dank
|
|
|
|
|
> Ah okay .
>
> Kann mir vlt. noch wer eine Seite empfehlen, wo ich soetwas
> wie einen Plan finde, wie ich einen Isomorphismus zeige?
> Weil mir ist auch nicht ganz klar, wie ich einen
> Homomorphismus zeige!
>
> Vielen lieben dank
Hallo,
Du meinst, wie Du von einer gegebenen Abbildung zwischen zwei Vektorräumen zeigst, daß es ein Vektorraumisomorphismus ist?
Indem Du zeigst, daß es ein Vektorraumhomomorphismus ist, also eine lineare Abbildung,
und indem Du Injektivität und Surjektivität zeigst.
Seiten mit Plänen braucht man dafür eher nicht, was zu tun ist, ergibt sich doch aus den Definitionen.
Gruß v. Angela
|
|
|
|