Kettenregel bei Gradient? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:05 Sa 03.02.2007 | Autor: | Bastiane |
Aufgabe | Sei eine glatte Funktion [mm] f:\IR^2\to\IR [/mm] sowie die Rotationsmatrix [mm] R\in [/mm] SO(2) gegeben. Dann wird über [mm] \tilde{f}(x):=f(R*x) [/mm] eine rotierte Version von f definiert. Zeigen Sie die Rotationsinvarianz des Gradienten und des Laplace-Operators, d.h. zeigen Sie
(a) [mm] $R\nabla \tilde{f}(x)=\nabla [/mm] f(R*x)$
(b) [mm] $||\nabla \tilde{f}(x)||=||\nabla [/mm] f(R*x)||$
(c) [mm] $\Delta \tilde{f}(x)=\Delta [/mm] f(R*x)$
Tipp: [mm] R\in [/mm] SO(2) sind [mm] $2\times [/mm] 2$-Matrizen mit det(R)=1 und [mm] R^TR=\I1. [/mm] Sie lassen sich als [mm] R=\pmat{\cos(\alpha)&-\sin(\alpha)\\\sin(\alpha)&\cos(\alpha)} [/mm] schreiben. |
Hallo zusammen!
Obiges ist eine alte Übungsaufgabe, die ich nicht so ganz verstehe. In (a) und (b) muss ich ja quasi den Gradient einer verketteten Funktion berechnen. Nun hieß es aber in der Übung, dass es für Gradienten keine Kettenregel gibt oder dass man das halt nicht so schreiben kann. Aber wieso nicht, und wie macht man es dann? Und wie sieht das mit dem Laplace dabei aus?
Viele Grüße
Bastiane
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:00 Sa 03.02.2007 | Autor: | moudi |
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Bastiane
Es gibt natürlich schon eine verallgemeinerte Kettenregel:
Ist $g:\IR\to\IR^n$ und $f:\IR^n\to\IR$, so ist die Verknüpfung $f\circ g: \IR\to\IR$ eine Funktion einer Variablen. Um konkreter zu werden sei
$g=\vektor{y_1(x) \\ y_2(x)\\ \vdots\\ y_n(x)}$ und $f=f(y_1,y_2,\dots,y_n)$, dann gilt
$(f\circ g)'(x)=\left.\frac{\partial f}{\partial y_1}\right|_{y_1(x)}\cdot \frac{dy_1}{dx}+\left.\frac{\partial f}{\partial y_2}\right|_{y_2(x)}\cdot \frac{dy_2}{dx}+\dots +\left.\frac{\partial f}{\partial y_n}\right|_{y_n(x)}\cdot \frac{dy_n}{dx}$
Entsprechend wenn g eine Funktion von $g:\IR^n\to\IR^n$ ist: $g=\vektor{y_1(x_1,\dots,x_n) \\ y_2(x_1,\dots,x_n)\\ \vdots\\ y_n(x_1,\dots,x_n)}$ und $f=f(y_1,y_2,\dots,y_n)$ gilt
$\frac{\partial(f\circ g)}{\partial x_k}=\sum_{i=1}^n\frac{\partial f}{\partial y_i}\cdot\frac{\partial y_i}{\partial x_k}.$
Ist jetzt g eine Lineare Funktion mit Matrix $R=(a_{ij})$, d.h. $y_i=\sum_{j=1}^{n}a_{ij} x_j$, so gilt $\frac{\partial y_i}{\partial x_k}= a_{ik}$ und wir erhalten oben mit $\tilde f(\vec x)=(f\circ g)(\vec x)$:
$\frac{\partial\tilde f}{\partial x_k}=\sum_{i=1}^2\frac{\partial f}{\partial y_i}a_{ik}=\sum_{i=1}^2a^T_{ki}\frac{\partial f}{\partial y_i}$ (1)
oder mit Gradienten und Matrizen geschrieben:
$\nabla\tilde f(\vec x)=R^T\nabla f(R\vec x)$.
Durch Multiplikation dieser Identität mit R unter Berücksichtigung von $RR^T=1$ ergibt sich
(a) $R\nabla\tilde f(\vec x)=\nabla f(R\vec x)$.
(b) ist eine Konsequenz von (a), da "Rotationen" Isometrien sind.
Um den Laplace-Operator zu erhalten leiten wir (1) nochmals ab
[mm]
\frac{\partial^2\tilde f}{\partial x_k^2}=\frac{\partial}{\partial x_k}\left(\sum_{i=1}^2\frac{\partial f}{\partial y_i}a_{ik}\right) =\sum_{i=1}^2\frac{\partial}{\partial x_k}\left(\frac{\partial f}{\partial y_i}\right)a_{ik}= \sum_{i=1}^2\sum_{j=1}^2\frac{\partial^2 f}{\partial y_i\partial y_j}a_{jk}a_{ik}
[/mm]
Summieren über k liefert den Laplace-Operator:
[mm]
\Delta \tilde f=\sum_{k=1}^2\frac{\partial^2\tilde f}{\partial x_k^2}= \sum_{k=1}^2\sum_{i=1}^2\sum_{j=1}^2\frac{\partial^2 f}{\partial y_i\partial y_j}a_{jk}a_{ik}
[/mm]
Durch vertauschen der Summen links, indem man zuertst über k summiert und beachtet, dass [mm] $\sum_{k=1}^2a_{ik}a_{jk}=\sum_{k=1}^2a_{ik}a^T_{kj}=\delta_{ij}$, [/mm] denn diese Summe ist nichts anderes als das ij-te Element des Matrizenprodukts [mm] $RR^T=1$.
[/mm]
So erhält man
[mm]
\Delta \tilde f(\vec x)= \sum_{k=1}^2\sum_{i=1}^2\sum_{j=1}^2\frac{\partial^2 f}{\partial y_i\partial y_j}a_{jk}a_{ik} =\sum_{i=1}^2\sum_{j=1}^2\frac{\partial^2 f}{\partial y_i\partial y_j}\sum_{k=1}^2a_{jk}a_{ik} =\sum_{i=1}^2\sum_{j=1}^2\frac{\partial^2 f}{\partial y_i\partial y_j}\delta_{ij} = \sum_{i=1}^2\frac{\partial^2 f}{\partial^2 y_i}=\Delta f(R\vec x)
[/mm]
Die obige Rechnung gilt man natürlich in beliebigen Dimensionen für [mm] $R\in [/mm] O(n)$.
mfg Moudi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:22 Fr 16.02.2007 | Autor: | Volker2 |
Hallo Christiane,
moudi hat Deine Frage ja schon beantwortet. Ich will nur noch mal kurz eine koordinatenfreie Lösung skizzieren:
Der Gradient einer Funktion $f$ is das eindeutig bestimmte Vektorfeld [mm] $x\mapsto \nabla f_x$ [/mm] s.d.
$$
[mm] \langle\nabla f_x,v\rangle=df_x(v)
[/mm]
$$
für alle Vektoren [mm] v\in\IR [/mm] und Punkte [mm] x\in\IR [/mm] gilt. Sei [mm] $\tilde{f}=f\circ [/mm] R$. Dann gilt nach der Kettenregel
$$
[mm] d\tilde{f}_x=df_{Rx}\circ [/mm] R
$$
wegen [mm] $dR_y=R$, [/mm] denn R ist linear. Es folgt
$$ [mm] \langle\nabla\tilde{f}_x,v\rangle=d\tilde{f}_x(v)=df_{Rx}(Rv)=\langle\nabla f_{Rx},Rv\rangle=\langle R^t\nabla f_{Rx},v\rangle
[/mm]
$$
für alle [mm] $v\in\IR^n$.Aus [/mm] der Eindeutigkeit des Gradienten folgt nun
$$
[mm] \nabla\tilde{f}_x=R^t\nabla f_{Rx}
[/mm]
$$
oder halt
$$
[mm] R\nabla\tilde{f}_x=\nabla f_{Rx}
[/mm]
$$
wie bei moudi.
Volker
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:09 Fr 16.02.2007 | Autor: | moudi |
Hallo Bastiane
Nein man rotiert nur einmal, aber man muss natürlich die Funktion an den gleichen Stellen betrachten.
Wir haben zwei Funktionen, nämlich [mm] $\tilde [/mm] f$ und $f$. Wir können aber nicht [mm] $\tilde [/mm] f(x)$ und $f(x)$ miteinander vergleichen, die haben absolut nichts miteinander zu tun, sondern wir können nur [mm] $\tilde [/mm] f(x)$ und $f(Rx)$ miteinander vergleichen. Denn hier stimmen sie ja übereine. [mm] $\tilde [/mm] f(x)=f(Rx)$.
Jetzt ist der Gradient koordinaten abhängig, er wird mit Hilfe der partiellen Ableitungen definiert. Die partiellen Ableitungen sind die Richtungsableitungen in den Koordinatenrichtungen [mm] ($\partial [/mm] x$=Ableitung in x-Richtung, [mm] $\partial [/mm] y$=Ableitung in y-Richtung).
Jetzt vergleichen wir die Gradienten in den Punkten, in denen die Funktionen übereinstimmen, d.h. einerseits [mm] $(\nabla \tilde [/mm] f)(x)$ und adrerseits [mm] $(\nabla [/mm] f)(Rx)$. Das sind beides Vektoren. Jetzt besagt die Gleichung nichts anderes, dass wenn man dern Gradienten von f(x) zurückrotiert, den Gradienten von [mm] $\tilde [/mm] f(x)$ erhält.
[mm] $(\nabla \tilde f)(x)=R^{-1}((\nabla [/mm] f)(Rx))$.
Das ganze ist auch sehr sinnvoll, wenn man sich eine kleine Skizze macht.
mfG Moudi
|
|
|
|