Konvergenz < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm]V= (x_1,x_2,...... ) \in\IR^N\ I \summe_{i=1}^{n} Ix_iI^2<\infty [/mm] der Vektorraum der Folgen, für die die Reihe konvergiert.
Sei [mm]\langle *,* \rangle \ : VxV\to\IR,((x_i,y_i))\mapsto\summe_{i=1}^{\infty} x_iy_i[/mm]
b) Sei U[mm]:=\leftx\ \{x\inV,\ \exists n_0\ inN\ sodass\ x_i=0\ fuer \ i \geq n_o \right \} \subseteq V[/mm]
der Untervektorraum der abbrechenden Folge
Bestimmen sie U Orthogonal
Gilt V= [mm]U \oplus U(orthohonal)[/mm]
C) Sei B=([mm]v_i[/mm]) eine Orthonormalbasis von V. Zeigen sie, dass dann für alle [mm]v\in V[/mm] gilt
[mm]\langle v, v_i \rangle=o[/mm]
für fast alle i gilt
D)Ist B=(0,0,0,0,0,0,.....1,0,0,......) nur an der i-ten stelle eine 1, sonst nullen eine Othonormalbasis von V |
Zu D) Ich würde sagen, dass es keine Orthonormalbasis von V ist, denn es müsste ja gelten
[mm]\langle v, B \rangle=0[/mm] mit B als Basis ergibt sich aus der definition [mm]\summe_{i=1}^{\infty} x_iy_i[/mm], dass wir an der iten stelle eine 1*v haben und das ist ungleich null, also keine ONB.
C) Würde ich mit D) argumentieren, da die ONB zum Beispiel die aus D) ist, gilt dass für fast alle i bis auf die ite stelle halt.
B) Die Folge ist ja eine abbrechenede Nullfolge
Wenn z.B. die anfangswerte 1,2,3,0,0,0,0,0,..... wären, wäre ja die orthogonal dazu, dass umgekehrte, also 0,0,0,1,2,3,
aber was ist mit dem fall: U=(1,2,3,0,0,0,...) ist ja Uorthogonal auch (2,-1,0,0,0,0,.....)
Für mich stellt sich die Frage wie ich das aufschreiben soll?
U ist ja [mm]\summe_{i=1}^{\ n_0-1} x_i\ + \summe_{i=n_0}^{\ p} x_i[/mm] in diesem Fall wäre ja die zweite Summe unsere abbrechende Folge. Dann wäre U Orthogonal
U(orthogonal)[mm]:=\leftx\ \{x\inV,\ \exists n_0\ inN\ sodass\ x_i=0\ fuer \ i \leq n_o \right \} \subseteq V[/mm] und ab dem [mm]n_o [/mm] die Folge beginnt.
Auf jeden Fall, kann man ausschließen dass es die direkte summe ist, da der schnitt von beiden nur die null sein müsste, was definitiv nicht so sit.
vielen dank
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 So 29.05.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|