www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: ansatz und dann?
Status: (Frage) beantwortet Status 
Datum: 22:06 Sa 17.09.2005
Autor: hypnoticgirl

"Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt"


ich habe eine Aufgabe zur Kurvendiskussion die Ansätze habe ich, aber komme dann nicht mehr weiter die Aufgabe lautet:

Eine quadratische Parabel schneidet die y-Achse bei -1 und nimmt ihr minimum bei x=4 an. Im 4.Quadranten liegt unterhalb der x-Achse über dem Intervall 0 und 1 ein Flächenstück zwischen der Parabel und der X-Achse, dessen Inhalt 11 beträgt.

um Welche Kurve handelt es sich?

folgende Ansätze habe ich für den Anfang:

f(x)=ax²+bx+c
c=-1
f'(4)=0
/F(1)=11/

jedoch komme ich jetzt nicht weiter?  ich weiß dann nicht was und wie ich weiter machen soll ! danke im voraus für eure hilfe



        
Bezug
Kurvendiskussion: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:59 Sa 17.09.2005
Autor: MathePower

Hallo hypnoticgirl,

[willkommenmr]

> Eine quadratische Parabel schneidet die y-Achse bei -1 und
> nimmt ihr minimum bei x=4 an. Im 4.Quadranten liegt
> unterhalb der x-Achse über dem Intervall 0 und 1 ein
> Flächenstück zwischen der Parabel und der X-Achse, dessen
> Inhalt 11 beträgt.
>
> um Welche Kurve handelt es sich?
>  
> folgende Ansätze habe ich für den Anfang:
>  
> f(x)=ax²+bx+c
>  c=-1
>  f'(4)=0
>  /F(1)=11/
>
> jedoch komme ich jetzt nicht weiter?  ich weiß dann nicht
> was und wie ich weiter machen soll ! danke im voraus für
> eure hilfe

Aus den zwei Bedingungen bekommst Du zwei Parameter. Nun fehlt Dir aber der dritte Paramtert. Den bekommst Du in dem Du

[mm]\int\limits_0^1 {a\;x^2 \; + \;b\;x\; - \;1\;dx} \; = \;11[/mm]

Gruß
MathePower

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 So 18.09.2005
Autor: hypnoticgirl

so jetzt habe ich weiter gerechnet:
[mm] \integral_{1}^{0} [/mm] {ax²+bx-1} dx=11

jetzt bilde ich die Stammfunktion (F)

[mm] \bruch{a}{3} [/mm] x³+ [mm] \bruch{b}{2}x² [/mm] -1=11

dann setzte ich die Intergralgrenzen ein!
erst die 1 dann die 0...

F(1)=  [mm] \bruch{1}{3}a+ \bruch{1}{2}b-1=11 [/mm]
F(0)= -1=11

ich bin mir unsicher ob das jetzt richtig ist????
und wie ich weiter rechnen soll
ich stelle doch danach die bedinungen nebneinander auf und muss doch durch ein verfahren a und b herauskriegen oder? und dann in f(x)=ax²+bx+c einsetzten???





Bezug
                        
Bezug
Kurvendiskussion: Hinweis
Status: (Antwort) fertig Status 
Datum: 12:53 So 18.09.2005
Autor: der_benni

Hi hypnoticgirl,

> so jetzt habe ich weiter gerechnet:
>   [mm]\integral_{1}^{0}[/mm] {ax²+bx-1} dx=11

Gefragt war doch - wenn ich dich richtig verstehe, nach der Fläche zwischen der Parabel und der X-Achse im vierten Quadranten, oder? Wäre es da nicht bequemer, Ober- und Untergrenze andersherum einzusetzen?

[mm]\integral_{0}^{1} (ax²+bx-1) dx=11[/mm]

Denke, dass es andersherum auch gehen sollte - musst dann nur noch mehr auf die Vorzeichen achten. Korrigiert mich, wenn ich irre.

>  
> jetzt bilde ich die Stammfunktion (F)

Klar, das ist richtig.

>  
> [mm]\bruch{a}{3}[/mm] x³+ [mm]\bruch{b}{2}x²[/mm] -1=11

Hmm. Das weniger. Was ist den die Ableitung von einem konstanten Glied? Es fällt weg. Entsprechend bei der 'Aufleitung'? Bei den beiden vorhandenen X hast du das genau richtig gemacht - Exponent um eins vergrößern und dadurch teilen. Du kannst dir die [mm]-1[/mm] ja auch als [mm]-1x^0[/mm] vorstellen - und egal welche Zahl du mit dem Exponenten null versiehst, es ist immer eins. (-> Potenzgesetze)
Also auch bei den konstanten Gliedern beim Aufleiten den Exponenten von X um eins vergrößern und dadurch teilen.


Bezug
                                
Bezug
Kurvendiskussion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:18 So 18.09.2005
Autor: khaliyah

ok also so weit ich verstanden habe habe ich vergessen die -1 zu erweitern bzw stammfunktion davon zu bilden
folglich würde es dann so lauten :

[mm] \bruch{a}{3} [/mm] x³+ [mm] \bruch{b}{2} [/mm] x²- [mm] \bruch{1}{2} [/mm]

dann setze ich einmal die 1 als integralgrenze
F(1)=  [mm] \bruch{a}{3}+ \bruch{b}{2} [/mm] - [mm] \bruch{1}{2}=11 [/mm]
F(0)=0

und jetzt????

und  gefragt ist nach der KURVE (um welche Kurve handelt es sich?)

folgende Ansätze hatte ich ja schon
f(x)=ax²+bx+c
c=-1
f'(4)=o
F(1)=11





Bezug
                                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 So 18.09.2005
Autor: khaliyah

tut mir leid natürlich heißt es

[mm] \bruch{1}{2} [/mm] X²

hatte x² vergessen

Bezug
                                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:47 Mo 19.09.2005
Autor: Bastiane

Hallo!

Ist dir hiermit erstmal weiter geholfen? Ansonsten dort nochmal fragen.

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Kurvendiskussion: Hinweis
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 19.09.2005
Autor: HJKweseleit

Beim Berechnen des Integrals machst du 2 Fehler:

-1 integriert gibt nicht -1, sondern -x. Die Stammfunktion ist also falsch.

Die Stammfunktion F(0) soll nicht 11 sein, ebenso nicht F(1). Die Fläche von 11 ergibt sich, wenn du die Differenz von F(0) und F(1) bildest und das richtige Vorzeichen wählst. So erhältst du eine Gleichung für a und b.

Die zweite Gleichung erhältst du, wenn du f'(x) bildest und dann f'(4)=0 setzt.

Gruß
Kw



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]