Lineare Abbildunge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:33 Sa 03.12.2005 | Autor: | Willi |
Hey Leute,
brauche Hilfe bei folgender Aufgabe:
Wir betrachten die [mm] \IR-lineare [/mm] Abbildung F: [mm] \IR^{3}\to\IR^{3}, (x1,x2,x3)\mapsto(x1+2x2+x3, [/mm] x2+x3, -x1+3x2+4x3). Man bestimme je eine Basis vom Kern und vom Bild von F.
[Tipp zum Kern: Man löse ein lineares Gleichungssystem. Tipp zum Bild: {F(1,0,0), F(0,1,0), F(0,0,1)} ist ein Erzeugendensystem des Bildes von F.]
Zur Basis vom Kern:
Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4) nehmen und damit ein LGS aufstellen um lineare Unabhängigkeit zu zeigen? Was kann ich hier zum Erzeugendensystem sagen?
Zur Basis vom Bild:
Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach vorkommt, da das quasi offensichtlich ist)? Oder muss ich erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein Erzeugendensystem vom Bild von F ist? Wie mach ich das?
Kann man mir vielleicht auch mal ganz allgemein erklären, wie ich Basen vom Kern / Bild nachweisen soll? Hab das nicht ganz so verstanden.
DANKE.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
> Wir betrachten die [mm]\IR-lineare[/mm] Abbildung F:
> [mm]\IR^{3}\to\IR^{3}, (x1,x2,x3)\mapsto(x1+2x2+x3,[/mm] x2+x3,
> -x1+3x2+4x3). Man bestimme je eine Basis vom Kern und vom
> Bild von F.
> [Tipp zum Kern: Man löse ein lineares Gleichungssystem.
> Tipp zum Bild: {F(1,0,0), F(0,1,0), F(0,0,1)} ist ein
> Erzeugendensystem des Bildes von F.]
>
> Zur Basis vom Kern:
> Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4)
> nehmen und damit ein LGS aufstellen um lineare
> Unabhängigkeit zu zeigen? Was kann ich hier zum
> Erzeugendensystem sagen?
Wie kommst du auf genau diese Vektoren? Und was willst du hier mit linearer Abhängigkeit machen?
Also, allgemein bedeutet "Kern" ja alle Vektoren, die auf 0 abgebildet werden. Also alle x, für die gilt: F(x)=0. Damit hast du ein LGS:
[mm] x_1+2x_2+x_3=0
[/mm]
[mm] x_2+x_3=0
[/mm]
[mm] -x_1+3x_2+4x_3=0
[/mm]
Und die Lösung diese LGS ist eine Basis des Kerns.
> Zur Basis vom Bild:
> Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier
> die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach
> vorkommt, da das quasi offensichtlich ist)? Oder muss ich
> erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein
> Erzeugendensystem vom Bild von F ist? Wie mach ich das?
>
> Kann man mir vielleicht auch mal ganz allgemein erklären,
> wie ich Basen vom Kern / Bild nachweisen soll? Hab das
> nicht ganz so verstanden.
> DANKE.
Mmh - wie das beim Bild ist - will mir zu dieser späten Stunde irgendwie nicht mehr einfallen. :-/
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:30 So 04.12.2005 | Autor: | DaMenge |
Hi Willi,
> Zur Basis vom Kern:
> Kann ich jetzt die Vektoren (1,2,1), (0,1,1) und (-1,3,4)
> nehmen und damit ein LGS aufstellen um lineare
> Unabhängigkeit zu zeigen? Was kann ich hier zum
> Erzeugendensystem sagen?
wieso lineare Unabhängigkeit zeigen? Das lineare Gleichungssystem (das Bastiane ja schon gegeben hat) beschreibt doch den Kern - genauer : die Lösungen dessen sind alle Vektoren aus dem Kern.
> Zur Basis vom Bild:
> Das Erzeugendensystem ist im Tipp gegeben. Reicht es hier
> die Lineare Unabhängigkeit nachzuweisen (was mir zu einfach
> vorkommt, da das quasi offensichtlich ist)? Oder muss ich
> erklären warum {F(1,0,0), F(0,1,0), F(0,0,1)} ein
> Erzeugendensystem vom Bild von F ist? Wie mach ich das?
Offensichtlich ? Dass die drei angegebenen Vektoren ein Erzeugendensystem des Bildes sind ist klar, denn es ist eine Basis des [mm] $\IR^3$, [/mm] aber das Bild ist doch nur ein Teilraum dessen, d.h. dies ist (in diesem Fall: offensichtlich) keine Basis des Bildes..
> Kann man mir vielleicht auch mal ganz allgemein erklären,
> wie ich Basen vom Kern / Bild nachweisen soll? Hab das
> nicht ganz so verstanden.
> DANKE.
schau doch mal folgendes:
Wie man den Kern einer linearen Abbildung bestimmt
und
Wie man das Bild einer linearen Abbildung bestimmt
viele Grüße
DaMenge
|
|
|
|