Matrixexponential Korrektur < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:43 Mo 17.10.2011 | Autor: | kushkush |
Aufgabe | man berechne :
[mm] $e^{At} [/mm] $ mit $A = [mm] \vektor{1&2&3 \\ 0 &1 & 2 \\ 0& 0 & 1 } [/mm] $ |
Hallo!
Also Charakteristisches Polynom ist [mm] $P_{f}(A) [/mm] = [mm] (1-X)^{3}$, [/mm] damit dreifache Nullstelle bei 1. Es gibt nur einen Eigenraum mit basiselement : [mm] $\vektor{1\\0\\0}$. [/mm] ALso ist die Jordan Normalform: [mm] $\vektor{1&1&0\\0&1&1 \\ 0&0 & 1 }$
[/mm]
Dies entspricht: [mm] $exp\vektor{1&0 &0 \\ 0& 1 &0 \\ 0&0&1} [/mm] exp [mm] \vektor{0&1&0\\0&0&1\\0&0&0}$
[/mm]
Das rechte ist nilpotent als [mm] $exp(A_{rechts})= [/mm] E + A + [mm] \frac{A^{2}}{2}+… [/mm] = [mm] \sum _{i=0}^{\infty} \frac{A^{i}}{i!}$ [/mm]
und für Potenzen höher als 2 ergibts nur noch die Nullmatrix, also [mm] $\exp (\vektor{0&1&0\\0&0&1\\0&0&0}) [/mm] = [mm] \vektor{1&0&0\\0&1&0\\0&0&1} [/mm] + [mm] \vektor{0&1&0\\ 0&0 & 1 \\ 0&0&0} [/mm] + [mm] \vektor{0&0&\frac{1}{2}\\0&0&0\\0&0&0}$
[/mm]
also ist [mm] $e^{At}= \exp \vektor{1&1&0\\0&1&1 \\ 0&0 & 1 } [/mm] = [mm] \vektor{exp(t) &0 &0 \\ 0 & exp(t) & 0 \\ 0& 0 & exp(t) } \vektor{1&1&\frac{1}{2} \\ 0&1&1\\ 0&0&1} [/mm] = [mm] \frac{e^{t}}{2} \vektor{2&2&1 \\ 0&2&2 \\ 0& 0 & 2} [/mm] $
Stimmt das so??
Danke für jegliche Hilfestellung!
Gruss
kushkush
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:30 Di 18.10.2011 | Autor: | Blech |
Hi,
die Rechnungen sehen alle richtig aus, aber
> $ [mm] e^{At}= \exp \vektor{1&1&0\\0&1&1 \\ 0&0 & 1 } [/mm] = [mm] \vektor{exp(t) &0 &0 \\ 0 & exp(t) & 0 \\ 0& 0 & exp(t) } \vektor{1&1&\frac{1}{2} \\ 0&1&1\\ 0&0&1} [/mm] = [mm] \frac{e^{t}}{2} \vektor{2&2&1 \\ 0&2&2 \\ 0& 0 & 2} [/mm] $
wie Du hier auf die verschiedenen Gleichheitszeichen kommst, mußt Du mir noch erklären...
Das erste ist z.B. schonmal offensichtlich Quatsch, da sich nicht nur die Matrix spontan in ihre JNF verwandelt, sonder auch das t mysterös untergetaucht ist. =)
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:48 Di 18.10.2011 | Autor: | kushkush |
Hallo!
>erstes Gleichheitszeichen
Ja, das soll nicht so sein!
> Stefan
Vielen Dank!!
Gruss
kushkush
|
|
|
|