Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:57 Do 15.11.2007 | Autor: | xcase |
Aufgabe | Bestimmen Sie experimentell d.h. durch ziehen der Urbild und Bildvektoren
mit der Maus eine reelle 2 x 2 Matrix und zwar so dass gilt:
Der [mm] Vektor\vektor{4 \\ 4} [/mm] ist im Kern der zur Matrix gehörenden linearen Abbildung und [mm] \vektor{3 \\ 1} [/mm] ist das Bild von [mm] \vektor{3 \\ -1} [/mm] .
Es handelt sich hier im eine Abbildung vom [mm] \IR^{2} \to \IR^{2} [/mm] .
Ich habe diese Frage in keinem anderen Forum gestellt. |
So, also ich habe hier jeweils 2 Vektoren im Urbildraum und im Bildraum. Wenn ich die Vektoren im Bildraum [mm] \to \vektor{0 \\ 0} [/mm] und [mm] \vektor{0 \\ 0} [/mm] setze, dann erhalte ich auf jeden fall, dass [mm] \vektor{4 \\ 4} [/mm] im Kern der Matrix ist, da die Abbildung dann [mm] \pmat{ 0 & 0 \\ 0 & 0 } [/mm] betraegt.
Ich weiss aber nicht was sie damit meinen, dass [mm] \vektor{3 \\ 1} [/mm] das Bild von [mm] \vektor{3 \\ -1} [/mm] sein soll. Blick da nicht so richtig durch.
MfG Tomi
|
|
|
|
Hallo xcase!
> Bestimmen Sie experimentell d.h. durch ziehen der Urbild
> und Bildvektoren
> mit der Maus eine reelle 2 x 2 Matrix und zwar so dass
> gilt:
>
> Der [mm]Vektor\vektor{4 \\ 4}[/mm] ist im Kern der zur Matrix
> gehörenden linearen Abbildung und [mm]\vektor{3 \\ 1}[/mm] ist das
> Bild von [mm]\vektor{3 \\ -1}[/mm] .
> Es handelt sich hier im eine Abbildung vom [mm]\IR^{2} \to \IR^{2}[/mm]
> .
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
> So, also ich habe hier jeweils 2 Vektoren im Urbildraum
> und im Bildraum. Wenn ich die Vektoren im Bildraum [mm]\to \vektor{0 \\ 0}[/mm]
> und [mm]\vektor{0 \\ 0}[/mm] setze, dann erhalte ich auf jeden fall,
> dass [mm]\vektor{4 \\ 4}[/mm] im Kern der Matrix ist, da die
> Abbildung dann [mm]\pmat{ 0 & 0 \\ 0 & 0 }[/mm] betraegt.
> Ich weiss aber nicht was sie damit meinen, dass [mm]\vektor{3 \\ 1}[/mm]
> das Bild von [mm]\vektor{3 \\ -1}[/mm] sein soll. Blick da nicht so
> richtig durch.
Das bedeutet, dass wenn du [mm] \vektor{3\\-1} [/mm] mit der Abbildung abbildest, dass du dann [mm] \vektor{3\\1} [/mm] erhältst. Und "abbilden" bedeutet, dass du die Matrix mit diesem Vektor multiplizierst.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:49 Fr 16.11.2007 | Autor: | xcase |
danke dir!!! :D
Hab das jetzt mit nem LGS ausgerechnet und bekomme heraus:
[mm] A\pmat{ \bruch{3}{4} & \bruch{-3}{4} \\ \bruch{1}{4} & \bruch{-1}{4} }. [/mm] Sollte so richtig sein. Danke nochmal :D
MfG Tomi
|
|
|
|