www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Mengen kompakt?
Mengen kompakt? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen kompakt?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mi 25.08.2010
Autor: QTPi

Topologie: T= [mm] \{ \emptyset, \IR \} \cup \{ (-c,\infty)| c>0 \} [/mm]

Sind die Mengen [-3,0], (-3,0) kompakt?

Ich steh total auf dem Schlauch ... :(

[mm] Qt\pi [/mm]

        
Bezug
Mengen kompakt?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 25.08.2010
Autor: steppenhahn

Hallo!

> Topologie: T= [mm]\{ \emptyset, \IR \} \cup \{ (-c,\infty)| c>0 \}[/mm]
>
> Sind die Mengen [-3,0], (-3,0) kompakt?
>  
> Ich steh total auf dem Schlauch ... :(

Hast du wirklich keinerlei Ansätze?
Ein Anfang wäre es, die (eure) Definition von Kompaktheit hier aufzuschreiben.

Es wird die mit den Überdeckungen sein: Eine Menge M heißt kompakt, wenn jede offene Überdeckung von M eine endliche Teilüberdeckung besitzt.

1.   Das Intervall [-3,0]. Das ist kompakt.
Versuche dich an einem Beweis! Beginne so: Sei [mm] (U_{i})_{i\in I} [/mm] eine beliebige offene Überdeckung von [-3,0]. Dann muss es ein [mm] i\in [/mm] I geben, so dass $(-3) [mm] \in U_{i}$ [/mm] ist. Welche Mengen kommen für [mm] U_{i} [/mm] nur in Frage?

2.  Das Intervall (-3,0). Das ist nicht kompakt.
Gegenbeispiel: Für [mm] n\in\IN [/mm] definiere [mm] $U_{n}:=\left(-3+\frac{1}{n},\infty\right)$. [/mm] Das sind alle Elemente der Topologie. Wie geht es weiter?


Grüße,
Stefan

Bezug
                
Bezug
Mengen kompakt?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Mi 25.08.2010
Autor: QTPi

Hi,

vielen Dank für die schnelle Antwort!


> 1.   Das Intervall [-3,0]. Das ist kompakt.
>  Versuche dich an einem Beweis! Beginne so: Sei
> [mm](U_{i})_{i\in I}[/mm] eine beliebige offene Überdeckung von
> [-3,0]. Dann muss es ein [mm]i\in[/mm] I geben, so dass [mm](-3) \in U_{i}[/mm]
> ist. Welche Mengen kommen für [mm]U_{i}[/mm] nur in Frage?

Hmm, nur Mengen, die auch in T vorkommen? Oh je, ich habe immer noch ein Brett vor dem Kopf ....

  

> 2.  Das Intervall (-3,0). Das ist nicht kompakt.
>  Gegenbeispiel: Für [mm]n\in\IN[/mm] definiere
> [mm]U_{n}:=\left(-3+\frac{1}{n},\infty\right)[/mm]. Das sind alle
> Elemente der Topologie. Wie geht es weiter?

[mm] S=\{ \left(-3+\frac{1}{n},\infty\right) | n=2,3,4,\ldots \} [/mm]
Wenn x [mm] \in [/mm] [-3,0],  dann gehört x zu einem Interval mit der Form [mm] \left(-3+\frac{1}{n},\infty\right) [/mm] und somit ist S eine Überdeckung von [-3,0]. Außerdem sind die Intervalle in S alle offen und somit ist S eine offene Überdeckung von [-3,0].

Aber sei  
[mm] \{ \left(-3+\frac{1}{n_1},\infty\right) , \ldots , \left(-3+\frac{1}{n_k},\infty\right) \} [/mm]
eine endliche Teilüberdeckung von S, dann wird nicht nicht jeder Punkt x überdeckt, für den gilt:
x [mm] \le -3+max\{\frac{1}{n_1}, \ldots, \frac{1}{n_k}\} [/mm]

Grüße,

[mm] QT\pi [/mm]


Bezug
                        
Bezug
Mengen kompakt?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Mi 25.08.2010
Autor: steppenhahn

Hallo!


> Hi,
>  
> vielen Dank für die schnelle Antwort!
>
>
> > 1.   Das Intervall [-3,0]. Das ist kompakt.
>  >  Versuche dich an einem Beweis! Beginne so: Sei
> > [mm](U_{i})_{i\in I}[/mm] eine beliebige offene Überdeckung von
> > [-3,0]. Dann muss es ein [mm]i\in[/mm] I geben, so dass [mm](-3) \in U_{i}[/mm]
> > ist. Welche Mengen kommen für [mm]U_{i}[/mm] nur in Frage?
>  
> Hmm, nur Mengen, die auch in T vorkommen? Oh je, ich habe
> immer noch ein Brett vor dem Kopf ....

T besteht doch nur aus den Mengen, die in deiner Definition stehen.
Alle Mengen von T sind offen. Aber wenn (-3) in einer Menge von T enthalten ist, welche Mengen von T kommen denn dann überhaupt in Frage?


> > 2.  Das Intervall (-3,0). Das ist nicht kompakt.
>  >  Gegenbeispiel: Für [mm]n\in\IN[/mm] definiere
> > [mm]U_{n}:=\left(-3+\frac{1}{n},\infty\right)[/mm]. Das sind alle
> > Elemente der Topologie. Wie geht es weiter?
>  
> [mm]S=\{ \left(-3+\frac{1}{n},\infty\right) | n=2,3,4,\ldots \}[/mm]
> Wenn x [mm]\in[/mm] [-3,0],  dann gehört x zu einem Interval mit
> der Form [mm]\left(-3+\frac{1}{n},\infty\right)[/mm] und somit ist S
> eine Überdeckung von [-3,0]. Außerdem sind die Intervalle
> in S alle offen und somit ist S eine offene Überdeckung
> von [-3,0].

Es geht hier aber ums offene Intervall (-3,0) !

> Aber sei  
> [mm]\{ \left(-3+\frac{1}{n_1},\infty\right) , \ldots , \left(-3+\frac{1}{n_k},\infty\right) \}[/mm]
>  
> eine endliche Teilüberdeckung von S, dann wird nicht nicht
> jeder Punkt x überdeckt, für den gilt:
>  x [mm]\le -3+max\{\frac{1}{n_1}, \ldots, \frac{1}{n_k}\}[/mm]

Was meinst du damit?
Meinst du statt max   eigentlich   min ? (Dann stimmts).

Grüße,
Stefan

Bezug
                                
Bezug
Mengen kompakt?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mi 25.08.2010
Autor: QTPi

Hi,

> > > 1.   Das Intervall [-3,0]. Das ist kompakt.
>  >  >  Versuche dich an einem Beweis! Beginne so: Sei
> > > [mm](U_{i})_{i\in I}[/mm] eine beliebige offene Überdeckung von
> > > [-3,0]. Dann muss es ein [mm]i\in[/mm] I geben, so dass [mm](-3) \in U_{i}[/mm]
> > > ist. Welche Mengen kommen für [mm]U_{i}[/mm] nur in Frage?
>  >  
> > Hmm, nur Mengen, die auch in T vorkommen? Oh je, ich habe
> > immer noch ein Brett vor dem Kopf ....
>  
> T besteht doch nur aus den Mengen, die in deiner Definition
> stehen.
>  Alle Mengen von T sind offen. Aber wenn (-3) in einer
> Menge von T enthalten ist, welche Mengen von T kommen denn
> dann überhaupt in Frage?

Es kommen nur die Mengen von T in Frage, die (-3) enthalten, also entweder [mm] \|R [/mm] oder c>3. Aber c>3 scheint nicht zu stimmen, denn dann ist ja [mm] (-3,\infty) [/mm] und da ist (-3) nicht enthalten. Muss ich hier vielleicht mit einem Infimum arbeiten?

Es tut mir echt Leid, ich stell mich normalerweise nicht so selten dämlich an, aber Topologie raubt mir noch den letzten Nerv ...


> > > 2.  Das Intervall (-3,0). Das ist nicht kompakt.
>  >  >  Gegenbeispiel: Für [mm]n\in\IN[/mm] definiere
> > > [mm]U_{n}:=\left(-3+\frac{1}{n},\infty\right)[/mm]. Das sind alle
> > > Elemente der Topologie. Wie geht es weiter?
>  >  
> > [mm]S=\{ \left(-3+\frac{1}{n},\infty\right) | n=2,3,4,\ldots \}[/mm]
> > Wenn x [mm]\in[/mm] [-3,0],  dann gehört x zu einem Interval mit
> > der Form [mm]\left(-3+\frac{1}{n},\infty\right)[/mm] und somit ist S
> > eine Überdeckung von [-3,0]. Außerdem sind die Intervalle
> > in S alle offen und somit ist S eine offene Überdeckung
> > von [-3,0].
>  
> Es geht hier aber ums offene Intervall (-3,0) !

Ooops, stimmt ... vertippt ... auf meinem Schmierzettel war's richtig.


> > Aber sei  
> > [mm]\{ \left(-3+\frac{1}{n_1},\infty\right) , \ldots , \left(-3+\frac{1}{n_k},\infty\right) \}[/mm]
>  
> >  

> > eine endliche Teilüberdeckung von S, dann wird nicht nicht
> > jeder Punkt x überdeckt, für den gilt:
>  >  x [mm]\le -3+max\{\frac{1}{n_1}, \ldots, \frac{1}{n_k}\}[/mm]
>  
> Was meinst du damit?
>  Meinst du statt max   eigentlich   min ? (Dann stimmts).

Ja, Du hast Recht es muss  min heißen - max macht ja gar kein Sinn. Sorry.

Grüße

[mm] QT\pi [/mm]


Bezug
                                        
Bezug
Mengen kompakt?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mi 25.08.2010
Autor: Marcel

Hallo,

> Hi,
>  
> > > > 1.   Das Intervall [-3,0]. Das ist kompakt.
>  >  >  >  Versuche dich an einem Beweis! Beginne so: Sei
> > > > [mm](U_{i})_{i\in I}[/mm] eine beliebige offene Überdeckung von
> > > > [-3,0]. Dann muss es ein [mm]i\in[/mm] I geben, so dass [mm](-3) \in U_{i}[/mm]
> > > > ist. Welche Mengen kommen für [mm]U_{i}[/mm] nur in Frage?
>  >  >  
> > > Hmm, nur Mengen, die auch in T vorkommen? Oh je, ich habe
> > > immer noch ein Brett vor dem Kopf ....
>  >  
> > T besteht doch nur aus den Mengen, die in deiner Definition
> > stehen.
>  >  Alle Mengen von T sind offen. Aber wenn (-3) in einer
> > Menge von T enthalten ist, welche Mengen von T kommen denn
> > dann überhaupt in Frage?
>  
> Es kommen nur die Mengen von T in Frage, die (-3)
> enthalten, also entweder [mm]\|R[/mm] oder c>3. Aber c>3 scheint
> nicht zu stimmen, denn dann ist ja [mm](-3,\infty)[/mm] und da ist
> (-3) nicht enthalten. Muss ich hier vielleicht mit einem
> Infimum arbeiten?

ne, war doch okay. Ich mache es mal formal:
Seien für jedes $i$ aus einer (beliebigen) Indexmenge $I$ nun [mm] $T_i \in {\blue{\mathcal{T}:=\{\emptyset,\IR\} \cup \{(-c,\infty): c > 0\}}}$ [/mm] so, dass
[mm] $$\bigcup_i T_i \supseteq [-3,0]\,.$$ [/mm]

Ist für ein [mm] $i_0\in [/mm] I$ nun [mm] $T_{i_0}=\IR\,,$ [/mm] so ist wegen [mm] $T_{i_0}=\IR \supseteq [/mm] [-3,0]$ sicherlich [mm] $\{T_{i_0}\}$ [/mm] eine endliche (offene) Teilüberdeckung von $[-3,0]$ der (offenen) Überdeckung [mm] $\{T_i: i \in I\}$ [/mm] von $[-3,0]$ gefunden.

Wir betrachten nun also den nichttrivialen Fall, dass [mm] $T_i \not=\IR$ [/mm] für alle $i [mm] \in [/mm] I$ gilt. Dann muss es aber wegen [mm] $\bigcup_{i}T_i \supseteq [/mm] [-3,0]$ ein $j [mm] \in [/mm] I$ so geben, dass $-3 [mm] \in T_j\,.$ [/mm] Damit kann nur [mm] $T_j \not=\emptyset$ [/mm] sein, und wegen insbesondere [mm] $T_j \not=\IR$ [/mm] (wir nehmen hier ja sogar [mm] $T_i \not=\IR$ [/mm] für alle $i [mm] \in [/mm] I$ an!) existiert ein [mm] $c_j [/mm] > 0$ mit $-3 [mm] \in T_j=(-c_j,\infty)$ [/mm] (das folgt hier aus der Definition der Topologie [mm] ${\blue{\mathcal{T}}}\,.$) [/mm]
Daraus folgt [mm] $c_j [/mm] > [mm] 3\,,$ [/mm] also
[mm] $$T_j =(-c_j,\infty) \text{ mit einem }c_j [/mm] > [mm] 3\,,$$ [/mm]
und das impliziert
$$[-3,0] [mm] \subseteq (-c_j,0] \subseteq (-c_j,\infty)=T_j\,.$$ [/mm]
Also ist hier [mm] $\{T_j\}$ [/mm] eine endliche (offene) Teilüberdeckung von $[-3,0]$ der vorgegebenen (offenen) Überdeckung [mm] $\{T_i: i \in I\}$ [/mm] von [mm] $[-3,0]\,.$ [/mm] Da [mm] $\{T_i: i \in I\}$ [/mm] beliebig war (d.h. bei der Argumentation wurde keine "konkrete" offene Überdeckung benutzt, sondern nur die Eigenschaften, die eine jede offene Überdeckung hat), hat jede offene Überdeckung hier eine endliche offene Teilüberdeckung (man findet immer sogar eine Teilüberdeckung, die nur aus einer Menge der offenen Überdeckung besteht).

(Beachte: Endliche Teilüberdeckung bedeutet, dass man aus der "Familie [mm] $\{T_i: i \in I\}$ [/mm] - eine "Menge, deren Elemente wieder Mengen sind!" - endlich viele Mengen auswählen kann. Ob diese so gewählten Elemente, als eigenständige Mengen betrachtet, dann selbst endlich, abzählbar oder oder oder..., sind, interessiert uns dabei nicht. Anders formuliert:
Du musst hier aus der Indexmenge [mm] $I\,$ [/mm] eine endliche Teilmenge $E [mm] \subseteq [/mm] I$ so finden, dass [mm] $\bigcup_{e \in E} T_e \supseteq [/mm] [-3,0]$ gilt.
Das "endlich" bei "endlicher Teilüberdeckung" bedeutet also, dass "man die Indexmenge [mm] $I\,$ [/mm] durch eine endliche Indexmenge so ersetzen kann, dass die Überdeckungseigenschaft weiter vorhanden bleibt.")

Beste Grüße,
Marcel  

Bezug
                                                
Bezug
Mengen kompakt?: Danke schön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:01 Do 26.08.2010
Autor: QTPi

Herzlichen Dank für die ausführliche Erklärung, Marcel! *Brett-vom-Kopf-nehm*
Auch herzlichen Dank an Stefan für die geduldige Antworten auf meine Rückfragen. :)

Grüße
[mm] QT\pi [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]