Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich verstehe nicht genau was das Minimalpolynom ist.
In der VL wurde es so definiert:
Es existiert genau ein normiertes Polynom [mm] M_{A} \in [/mm] K[x] mit ker [mm] phi_{A} [/mm] = [mm] M_{A} \* [/mm] K[x].
Dabei ist [mm] phi_{A} [/mm] der Einsetzungsoperator
[mm] phi_{A}: [/mm] K[x] [mm] \to [/mm] End(V), f = [mm] \summe_{ }^{ }c_{k}x^{k} \mapsto c_{k}A^{k} [/mm] =: f(A
Das Minimalpolynom [mm] M_{A} [/mm] ist das normierte Polynom von minimalem Grad im ker [mm] phi_{A}
[/mm]
Das [mm] M_{A} [/mm] im kern des Einsetzungsoperators liegt, heißt dass es die Eigenwerte von A als Nullstellen hat. Normiert heißt der 'erste' Koeffizient ist 1 oder -1? Was genau bedeutet jetzt minimal? Ich dachte, das heißt jede Nullstelle kommt nur einmal vor, aber dann kam ein Beispiel das mich verwirrt hat:
[img]
[mm] P_{A} [/mm] = [mm] (x-2)^{5}(x-3)
[/mm]
[mm] M_{A} [/mm] = [mm] (x-2)^{2}(x-3), [/mm] warum nicht (x-2)(x-3)?
Gruß,
Julia
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:10 Mi 28.06.2006 | Autor: | Hanno |
Hallo!
Hierzu muss ich auch mal meinen [Himbeer]Senf abgeben - höhö :)
> Dabei ist $ [mm] phi_{A} [/mm] $ der Einsetzungsoperator
> $ [mm] phi_{A}: [/mm] $ K[x] $ [mm] \to [/mm] $ End(V), f = $ [mm] \summe_{ }^{ }c_{k}x^{k} \mapsto c_{k}A^{k} [/mm] $ =: f(A
Ja genau. [mm] $\phi_A$ [/mm] weist jedem Polynom aus K[x] eine lineare Abbildung durch die von dir genannte Vorschrift zu. Z.B. erhalte ich die lineare Abbildung [mm] $A^3+A+1$, [/mm] also [mm] $x\mapsto [/mm] A(A(A(x)))+A(x)+x$, wenn ich die [mm] $\phi_A$ [/mm] auf das Polynom [mm] $x^3+x+1$ [/mm] anwende. Für manche Polynome ergibt sich die Nullabbildung wenn man sie auf [mm] $\phi_A$ [/mm] anwendet; die Menge all dieser Polynome bezeichnen wir bekanntlich mit [mm] $kern(phi_A)$. [/mm] Das Minimalpolynom ist nun dasjenige eindeutige normierte Polynom (normiert bedeutet, dass der Leitkoeffizient, d.h. der Koeffizient bei der größten $x$-Potenz, gleich $1$ ist), das jedes weitere Polynom, welches im Kern von [mm] $\phi_A$ [/mm] liegt, d.h. $A$ als Nullstelle hat, teilt. Der algebraische Hintergrund, falls er dich interessiert, liegt darin, dass [mm] $\phi_A$ [/mm] ein Ringhomomorphismus zwischen den Ringen K[x] und dem Endomorphismenring von $V$ darstellt und daher [mm] $kern(\phi_A)$ [/mm] ein Ideal in K[x] ist. Als Hauptidealring existieren Polynome aus K[x], das den Kern erzeugen; es handelt sich hierbei genau um die Polynome minimalen Grades im Kern. Fordern wir zusätzlich noch die Normiertheit des Polynoms, so ist das Minimalpolynom eindeutig bestimmt.
> Das $ [mm] M_{A} [/mm] $ im kern des Einsetzungsoperators liegt, heißt dass es die Eigenwerte von A als Nullstellen hat.
Um Äquivalenz handelt es sich nicht. Lediglich gilt allerdings, dass die Nullstellen des charakteristischen Polynomes von $A$, d.h. die Eigenwerte von $A$, auch Nullstellen des Minimalpolynomes sein müssen. Wenn also [mm] $(x-4)^5\cdot (x-2)^3$ [/mm] charakteristisches Polynom von $A$ ist, so kommen als Minimalpolynome nur die Polynome [mm] $(x-4)^i\cdot (x-2)^j, 1\leq i\leq [/mm] 5, [mm] 1\leq j\leq [/mm] 3$ in Frage.
> $ [mm] P_{A} [/mm] $ = $ [mm] (x-2)^{5}(x-3) [/mm] $
> $ [mm] M_{A} [/mm] $ = $ [mm] (x-2)^{2}(x-3), [/mm] $ warum nicht (x-2)(x-3)?
Liegt dieser Frage eine anschauliche Begründung/Irttum zu Grunde? Es gilt i.A. einfach nicht, d.h. nur, weil $2$ und $3$ die Eigenwerte von $A$ sind, muss $(A-2)(A-3)$ noch nicht die Nullabbildung sein.
Ich hoffe, ich konnte dir ein wenig helfen. Wenn noch etwas unklar ist, frage einfach weiter.
Liebe Grüße,
Hanno
|
|
|
|
|
Danke für die ausführliche Antwort, die hat einige Missverständnisse beseitigt.
mit A-2 ist [mm] A-2*E_{n} [/mm] gemeint?
Dann hab ich eine ungefähre Vorstellung, wie das Minimalpolynom aussehen muss.
> [mm](x-4)^5\cdot (x-2)^3[/mm] charakteristisches Polynom von [mm]A[/mm] ist,
> so kommen als Minimalpolynome nur die Polynome [mm](x-4)^i\cdot (x-2)^j, 1\leq i\leq 5, 1\leq j\leq 3[/mm]
> in Frage.
Muss man A-2 und A-3 ausrechnen und alle in Frage kommenden i und j durchprobieren, oder gibt es einen einfacheren Weg?
Gruß,
Julia
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:14 Mi 28.06.2006 | Autor: | Hanno |
Hallo.
> mit A-2 ist $ [mm] A-2\cdot{}E_{n} [/mm] $ gemeint?
Ja.
> Muss man A-2 und A-3 ausrechnen und alle in Frage kommenden i und j durchprobieren, oder gibt es einen einfacheren Weg?
Mir ist kein einfacherer Weg bekannt, tut mir leid.
Weißt du allerdings von der Matrix/Abbildung bereits, dass sie diagonalisierbar ist, dann entspricht das Minimalpolynom immer genau dem Produkt der Linearfaktoren der entsprechenden Nullstellen; d.h. das Minimalpolynom einer diagonalisierbaren Matrix mit charakteristischem Polynom [mm] $(x-4)^5(x-2)^2(x-1)^7$ [/mm] wäre in jedem Falle $(x-4)(x-2)(x-1)$ (das kann man recht leicht einsehen, du kannst es ja mal versuchen)
Liebe Grüße,
Hanno
|
|
|
|