Mögliche Dreiecke von n Gerade < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien n Geraden im [mm] \IR [/mm] ^2 gegeben. Jeweils zwei der Geraden seien nicht parallel und jeweils drei der Geraden besitzen keinen gemeinsamen Schnittpunkt. Wieviele Schnittpunkte kann es geben? Wieviele Dreiecke können gebildet werden? |
Die Aufgabe ist zum Thema "vollständige Induktion" gestellt. Also das mit den Schnittpunkten hab ich raus, ich hab da [mm] \summe_{i=1}^{n} [/mm] (i-1) als Anzahl der Schnittpunkte herausgefunden und auch bewiesen. Bei den Dreicken fehlt mir leider der Ansatz. Ich hab mir das schon aufgezeichnet, aber ich erkenn da kein System. Wär für jede Hilfe dankbar.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:44 So 12.11.2006 | Autor: | otto.euler |
Sei [mm] A_n [/mm] die Anzahl der Schnittpunkte bei n Geraden.
Ein Dreieck hat drei Eckpunkte. Wie wäre es alle dreiteiligen Teilmengen aller Schnittpunkte zu betrachten? Ob jede solche Teilmenge ein Dreieck ist oder sein kann, lasse ich unbeachtet.
Die Anzahl der Dreiecke wäre dann [mm] \vektor{A_n \\3}.
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:43 So 12.11.2006 | Autor: | Improvise |
soweit war ich auchschon, aber das ist ja dann nicht die anzahl von möglichen dreiecken, da ja nicht jede 3 elementige teilmenge der schnittpunkte ein dreieck bildet. wie löst man das problem?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:56 So 12.11.2006 | Autor: | Brinki |
Hallo Improvise,
du brauchst für ein Dreieck mindestens 3 Geraden. -> n=3: ein Dreieck
Bei vier Geraden gibt es vier Dreiecke. Denn du kannst je drei Geraden für ein Dreieck auswählen, indem du eine aus den vieren ignorierst. -> n=4: 4 Dreiecke.
Die Wahl von drei aus vier kann man auch mit den Binomialkoeffizienten berechnen [mm] $\vektor{4 \\ 3}=\bruch [/mm] {4!}{3! *(4-3)!}=4$
( Bei einem wissenschaftlichen Taschenrechner mit den Tasten 4 nCr 3 enter.)
Wenn du nun eine fünfte Gerade hinzu nimmst, kannst du auf 5 Arten "Viererpakete" daraus machen. Jedes "Viererpaket" liefert die obigen 4 Möglichkeiten. In den $5*4$ auf diese Weise berechneten Dreieckskombinationen wurden jedoch alle doppelt gezählt. Warum? -> n=5: 10 Dreiecke.
Jetzt musst du zeigen, dass [mm] $\bruch{1}{2}*5*4=\vektor{5 \\ 3}$ [/mm] ist. Tatsächlich gilt: [mm] $\vektor{5 \\ 3}= \bruch{5*4*3+2+1}{1*2*3*1*2}$ [/mm]
Im Induktionsbeweis nimmst du beim Induktionsschluss natürlich die Richtigkeit der Formel [mm] $\vektor{k \\ 3}$ [/mm] für ein $k>=3$ an und schließt bei $k+1$ Geraden auf [mm] $\vektor{k+1 \\ 3}$
[/mm]
Kommst du damit zurecht?
Grüße Brinki
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:26 So 12.11.2006 | Autor: | Improvise |
ich habe dabei 2 probleme:
ich habe mir 5 solcher geraden aufgezeichnet und erkenne da irgendwie nur 9 dreiecke....das verwirrt mich
und zum anderen versteh ich nicht wieso jedes dreieck doppelt gezählt wird. im induktionschluß würde das ja bedetuen, dass man guckt wieviele teilmengen mit k geraden man aus k+1 geraden bilden kann. das wären k+1. jetzt müsste man ja die k+1 möglichkeiten mit den [mm] \vektor{k \\ 3} [/mm] dreicken multipilzieren und dann (und das versteh ich nicht warum das so ist) noch mit 1/(k-3) um auf [mm] \vektor{k+1 \\ 3} [/mm] möglichkeiten für dreickecke zu kommen. kannst du mir da weiterhelfen?
|
|
|
|