www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Natürlicher Logarithmus
Natürlicher Logarithmus < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Natürlicher Logarithmus: Nullstellen, Definitionsmenge!
Status: (Frage) beantwortet Status 
Datum: 16:17 So 24.04.2005
Autor: RuffY

Haloa Matheraum-User,

ich soll bei der Funktion f(x)=ln(x*(x-2)) die Nullstellen, sowie die Definitionsmenge bestimmen. Ich stehe total auf'm Schlauch... :-(
Könnte jemand von euch die Aufgabe mit Lösungsweg lösen, damit ich in Zukunft keine Probleme damit haben werde...?!
MfG

RuffY

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Natürlicher Logarithmus: Hinweis
Status: (Antwort) fertig Status 
Datum: 16:30 So 24.04.2005
Autor: Fabian

Hallo Ruffy

Die Funktion f(x)=lnx ist nur für x>0 definiert. Das bedeutet, du mußt bestimmen , für welche x die Ungleichung x(x-2)>0 erfüllt ist.

Jetzt versuch damit mal weiterzukommen.

Gruß Fabian



Bezug
                
Bezug
Natürlicher Logarithmus: ...Antwort Definitionsmenge..?
Status: (Frage) beantwortet Status 
Datum: 16:41 So 24.04.2005
Autor: RuffY

Ich würde aufgrund deines Hinweises sagen, dass [mm] x\in\IR\setminus[0;2] [/mm] , stimmt das so?

Bezug
                        
Bezug
Natürlicher Logarithmus: Stimmt!
Status: (Antwort) fertig Status 
Datum: 16:49 So 24.04.2005
Autor: Fabian

Genau richtig!

Gruß Fabian

Bezug
        
Bezug
Natürlicher Logarithmus: zur Nullstelle
Status: (Antwort) fertig Status 
Datum: 17:01 So 24.04.2005
Autor: Marcel

Hallo Ruffy!

> Haloa Matheraum-User,
>  
> ich soll bei der Funktion f(x)=ln(x*(x-2)) die Nullstellen,
> sowie die Definitionsmenge bestimmen. Ich stehe total auf'm
> Schlauch... :-(

Zunächst betrachtest du mal die Funktion [mm] $g(x)=\ln(x)$. [/mm] Die Funktion $g$ hat genau eine Nullstelle [mm] $x_0$, [/mm] und zwar ist das [mm] $x_0=1$. [/mm] So, und deswegen folgt dann für deine Funktion $f$, dass [mm] $x_N$ [/mm] genau dann eine Nullstelle von $f$ ist, wenn [mm] $x_N*(x_N-2)=1$ [/mm] gilt.

Kommst du damit nun weiter?

Viele Grüße,
Marcel

Bezug
                
Bezug
Natürlicher Logarithmus: ...Alles klar!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 So 24.04.2005
Autor: RuffY

Vielen Dank!

Bezug
        
Bezug
Natürlicher Logarithmus: 1. Ableitung von f(x)
Status: (Frage) beantwortet Status 
Datum: 17:45 So 24.04.2005
Autor: RuffY

..ich habe noch eine Frage: Stimmt die 1. Ableitung [mm] f'(x)=\bruch{2x-2}{x^2-2} [/mm] ..?

Bezug
                
Bezug
Natürlicher Logarithmus: Fast ...
Status: (Antwort) fertig Status 
Datum: 17:50 So 24.04.2005
Autor: Loddar

Hallo RuffY!


> Stimmt die 1. Ableitung [mm]f'(x)=\bruch{2x-2}{x^2-2}[/mm] ..?

[notok] Nicht ganz! Ich nehme mal an, im Nenner hat sich ein Tippfehler eingeschlichen, denn dort fehlt noch eine "Kleinigkeit" ...

Gruß
Loddar


Bezug
                        
Bezug
Natürlicher Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 So 24.04.2005
Autor: RuffY

Klar! Tippfehler im Nenne, da fehlt ein "x" ;-) Mercí

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]