Normalverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:49 Fr 01.03.2019 | Autor: | Mandy_90 |
Aufgabe | In 25 Jahren erhöhte sich die mittlere Größe männlicher Erwachsener von 175,8 cm auf 179,1 cm, während die Standardabweichung bei 5,84 cm blieb.
Die geforderte Mindestgröße bei Männern im Polizeidienst in England ist 172 cm. Nehmen Sie an, dasss die Größe männlicher Erwachsener durch eine Normalverteilung genügend gut approximiert wird.
Welcher Anteil Männer zu Beginn und am Ende der 25 jährigen Periode war zu klein , um in den Polizeidienst aufgenommen zu weredn ? |
Hallo liebe Leute,
zu dieser Aufgabe habe ich bereits eine Musterlösung, verstehe sie jedoch nicht ganz. Es ist [mm] X_{1} \sim N(\mu_{1},(\delta_{1})^{2}), X_{2} \sim N(\mu_{2},(\delta_{2})^{2}). [/mm] Ich versteh nicht was das bedeutet, awofür steht diese Schreibweise und wie wird [mm] \sim [/mm] ausgesprochen ?
[mm] \mu_{1}=175,8, \mu_{2}=179,1, \delta_{1}=5,84, \delta_{2}=5,84
[/mm]
Das hab ich verstanden. Die Mindestgröße ist 172. Dann
[mm] P(X_{1} \le 172)=P(\bruch{X_{1}-175,8}{5,84}\le\bruch{-3,8}{5,84})=PHI(\bruch{-3,8}{5,84})=0,2578. [/mm]
Wie man das ausgerechnet hat, versteh ich nicht. Dass die Werte eingesetzt wurden sehe ich. Aber wie kommt man auf diese Rechnung ? Oder gibt es dazu eine allgemeine Formel ? Und wie genau rechnet man dieses PHI am Ende aus ?
Vielen Dank
Mandy_90
|
|
|
|
Hiho,
dein Posting deutet darauf hin, dass dir rudimentäre Grundlagen fehlen.
Diese solltest du dringend nacharbeiten!
Deine Fragen sind alle, die in eurer Vorlesung garantiert behandelt wurden...
> Es ist [mm]X_{1} \sim N(\mu_{1},(\delta_{1})^{2}), X_{2} \sim N(\mu_{2},(\delta_{2})^{2}).[/mm]
> Ich versteh nicht was das bedeutet, awofür steht diese
> Schreibweise und wie wird [mm]\sim[/mm] ausgesprochen ?
Es bedeutet, dass [mm] $X_1$ [/mm] verteilt ist wie eine Normalverteilung mit den Parametern [mm] $\mu_1$ [/mm] und [mm] $\delta_1^2$.
[/mm]
> Das hab ich verstanden. Die Mindestgröße ist 172. Dann
>
> [mm]P(X_{1} \le 172)=P(\bruch{X_{1}-175,8}{5,84}\le\bruch{-3,8}{5,84})=PHI(\bruch{-3,8}{5,84})=0,2578.[/mm]
>
> Wie man das ausgerechnet hat, versteh ich nicht. Dass die
> Werte eingesetzt wurden sehe ich. Aber wie kommt man auf
> diese Rechnung ? Oder gibt es dazu eine allgemeine Formel ?
> Und wie genau rechnet man dieses PHI am Ende aus ?
Grundlagen, Grundlagen, Grundlagen!
[mm] $\Phi$ [/mm] bezeichnet die Verteilungsfunktion der Standardnormalverteilung
Damit wir diese verwenden können, müssen wir normalisieren / standardisieren, das bedeutet:
Ist [mm] X_1 [/mm] normalverteilt zu den Parametern [mm] \mu [/mm] und [mm] \delta_1^2 [/mm] so ist [mm] $\frac{X_1 - \mu}{\delta_1}$ [/mm] standardnormalverteilt.
Mach dir das klar!
Also wurde hier so umgeformt, dass [mm] X_1 [/mm] standardisiert ist.
Gruß,
Gono.
|
|
|
|