www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Nullstelle in R[x]
Nullstelle in R[x] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle in R[x]: Fehlende Schlussfolgerung
Status: (Frage) beantwortet Status 
Datum: 23:59 Do 17.09.2009
Autor: kleine_ente_nora

Ich habe folgende Aufgabe vollständig verstanden, verstehe dann aber nicht wie mein Prof die Schlussfolgerung zieht:
Betrachtet wird [mm] f(x)=x^{n}+a_{n-1}*x^{n-1}+...+a_{1}*x+a_{0} \in [/mm] R[x]. Sei [mm] \bruch{a}{b} [/mm] Nullstelle von f(x), so folgt:
[mm] 0=a^{n}+a_{n-1}*a^{n-1}*b+...+a_{0}*b^{n}. [/mm] Also (und das versteh ich nicht): [mm] b|a^{n}. [/mm] Wieso muss b denn [mm] a^{n} [/mm] teilen?

        
Bezug
Nullstelle in R[x]: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Fr 18.09.2009
Autor: schachuzipus

Hallo Nora,

> Ich habe folgende Aufgabe vollständig verstanden, verstehe
> dann aber nicht wie mein Prof die Schlussfolgerung zieht:
>  Betrachtet wird
> [mm]f(x)=x^{n}+a_{n-1}*x^{n-1}+...+a_{1}*x+a_{0} \in[/mm] R[x]. Sei
> [mm]\bruch{a}{b}[/mm] Nullstelle von f(x), so folgt:
>  [mm]0=a^{n}+a_{n-1}*a^{n-1}*b+...+a_{0}*b^{n}.[/mm] Also (und das
> versteh ich nicht): [mm]b|a^{n}.[/mm] Wieso muss b denn [mm]a^{n}[/mm]
> teilen?

Nun, $b$ teilt jeden der Summanden [mm] $a_{n-1}a^{n-1}b, a_{n-2}a^{n-2}b^2,....,a_0b^n$, [/mm] also auch die Summe [mm] $a_{n-1}a^{n-1}b+a_{n-2}a^{n-2}b^2+....+a_0b^n$ [/mm]

Außerdem teilt $b$ die [mm] $0=a^n+a_{n-1}a^{n-1}b+a_{n-2}a^{n-2}b^2+...+a_0b^n$ [/mm]


Damit teilt $b$ auch die Differenz [mm] $a_{n-1}a^{n-1}b+a_{n-2}a^{n-2}b^2+....+a_0b^n-\left(a^n+a_{n-1}a^{n-1}b+a_{n-2}a^{n-2}b^2+...+a_0b^n\right)=-a^n$ [/mm]

Damit dann auch [mm] $a^n$ [/mm]


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]