www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Oberflächeninteg. über Vektorf
Oberflächeninteg. über Vektorf < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächeninteg. über Vektorf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:27 Fr 15.09.2006
Autor: stevarino

Aufgabe
Vom Vektorfeld

[mm] v=\vektor{z \\ x\\-3y^{2}z} [/mm] ist das Oberflächenintegral [mm] \integral_{}^{}{}\integral_{}^{}{v dO} [/mm] den von z=0 bis z=5 reichenden Zylinder [mm] x^{2}+y^{2}=16 [/mm] zu berechnen

Hallo

also ich fang mal an ich muss die Grundfläche parametrisieren mit
[mm] x=\vektor{r*cos \phi \\ r*sin \phi\\0} [/mm] jetzt berechne ich [mm] x_{r}\times x_{\phi}=\vektor{0 \\ 0\\r} [/mm]
[mm] =\integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{0 \\ r*cos \phi\\0}* \vektor{0 \\ 0\\r}dr d\phi}=... [/mm]
und für die Deckfläche wäre es
[mm] \integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{5 \\ r*cos \phi\\-15r^{2}cos^{2}\phi}* \vektor{0 \\ 0\\r}dr d\phi}=... [/mm]
und für den Mantel mit
[mm] x=\vektor{4*cos \phi \\ 4*sin \phi\\z} [/mm] wäre es
[mm] \integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{z \\ 4*cos \phi\\-48cos^{2}\phi*z}* \vektor{4cos \phi \\ 4sin\pji\\0}dr d\phi}... [/mm]

Stimmen die Ansätze so... Oder muss ich die noch jeweils mit dem Normalvektor multiplizieren der immer aus dem Körper zeigen muss
also bei Grundfläche wäre der Normalvektor [mm] n=\vektor{0 \\ 0\\1} [/mm] und wenn der jetzt rauszeigen soll muss es [mm] n=\vektor{0 \\ 0\\-1} [/mm]
Wann brauch ich den Normalvektor dabei ????

Danke

lg Stevo

        
Bezug
Oberflächeninteg. über Vektorf: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Fr 15.09.2006
Autor: ron

Hallo,

In Zylinderkoordinaten gilt [mm] \vektor{r cos{ \phi } \\ r sin { \phi } \\ z} [/mm]
Hier z von 0 bis 5
Bei der Koordinatentransformation beachte z ist neben r und [mm] \phi [/mm] Integralvariable!
Dann die Werte in das Vektorfeld einsetzen und die Vektorprodukte ausrechnen und integrieren. Sinnvolle Reihenfolge wählen.
Vielleicht könne diese Hiweise helfen beim Verständnis und lösen.
Gruß
Ron

Bezug
        
Bezug
Oberflächeninteg. über Vektorf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Fr 15.09.2006
Autor: stevarino

Hallo

Also wenn [mm] x^{2}+y^{2}=r^{2} [/mm] ist dann ist [mm] r^{2}=16 [/mm] und das ist nun mal 4 und nicht 2


lg Stevo

Bezug
        
Bezug
Oberflächeninteg. über Vektorf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 18.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]