www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Patrialbruchzerlegung
Patrialbruchzerlegung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Patrialbruchzerlegung: Lösung
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 09.12.2006
Autor: noob

Aufgabe
[mm] \bruch{2x²+6x-4} {x(x+2)²}[/mm]


[mm] \Rightarrow[/mm]  [mm] \bruch{A+B+C} {x (x+2) (x+2)²}[/mm]

hi, folgendes problem: habe das polynom soweit zerlegt. nun muss man doch den erhaltenen hauptnenner: x + x+2 + (x+2)² mit A B C multiplizieren! und wie? ich komm da nicht hinter :D
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Patrialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Sa 09.12.2006
Autor: hopsie

Hallo!

Du musst folgende Gleichung aufstellen:

[mm] \bruch{A}{x} [/mm] + [mm] \bruch{B}{(x+2)^{2}} [/mm] = [mm] \bruch{2x^{2}+6x-4}{x(x+2)^{2}} [/mm]

Kommst du jetzt weiter?

Gruß, hopsie

Bezug
                
Bezug
Patrialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Sa 09.12.2006
Autor: noob

Aufgabe
A(x+2)²+B(x+2)x+cx  

und wo ist das C hin ? man muss laut lösung auf die terme oben  kommen dann ausmultiplizieren und anschließen das gauß verfahren anwenden

Bezug
                        
Bezug
Patrialbruchzerlegung: nicht vollständig
Status: (Antwort) fertig Status 
Datum: 18:03 Sa 09.12.2006
Autor: Loddar

Hallo noob!


Wie bereits angedeutet, ist Deine Partialbruchzerlegung nicht vollständig. Diese muss lauten:

[mm] $\bruch{A}{x}+\bruch{B}{x+2}+\bruch{C}{(x+2)^2}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Patrialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Sa 09.12.2006
Autor: noob

ja soweit bin ich auch gekommen.... und wie gehst nun weiter?
mfg noob

Bezug
                                        
Bezug
Patrialbruchzerlegung: weiterer Schritt
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 09.12.2006
Autor: Loddar

Hallo noob!


Nun diese Brüche gleichnamig machen und zusammenfassen:

[mm] $\bruch{A}{x}+\bruch{B}{x+2}+\bruch{C}{(x+2)^2} [/mm] \ = \ [mm] \bruch{A*(x+2)^2}{x*(x+2)^2}+\bruch{B*x*(x+2)}{x*(x+2)^2}+\bruch{C*x}{x*(x+2)^2} [/mm] \ = \ [mm] \bruch{A*(x+2)^2+B*x*(x+2)+C*x}{x*(x+2)^2} [/mm] \ = \ ...$

Im Zähler nun ausmultiplizieren, zusammenfassen und anschließend Koeffizientenvergleich.


Gruß
Loddar


Bezug
                
Bezug
Patrialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Sa 09.12.2006
Autor: riwe


> Hallo!
>  
> Du musst folgende Gleichung aufstellen:
>  
> [mm]\bruch{A}{x} + \bruch{B}{(x+2)^{2}} = \bruch{2x^{2}+6x-4}{x(x+2)^{2}}[/mm]
>  
> Kommst du jetzt weiter?
>  
> Gruß, hopsie


dieser ansatz ist nicht ausreichend.
versuche:

[mm]\bruch{A}{x} + \bruch{Bx+C}{(x+2)^{2}} = \bruch{2x^{2}+6x-4}{x(x+2)^{2}}[/mm]
denn x = -2 ist 2-fache wurzel.
es sollte A = -1, B = 3 und C = 10 oder so was rauskommen.
  

Bezug
                        
Bezug
Patrialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Sa 09.12.2006
Autor: noob

danke das sieht schon besser aus? aber wie kommt man darauf???

Bezug
                                
Bezug
Patrialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Sa 09.12.2006
Autor: riwe

zum beispiel damit:
[]doppelte nullstelle


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]