Poisson Gleichung - Ansatz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi,
ich häng grad an einer Aufgabe, die auf die Lösung der Poisson Gleichung
[mm] \Delta [/mm] U = [mm] 2xy^{3}+y^{2} [/mm] hinausläuft.
Als Hinweis ist gegeben, dass u ein Polynom in x,y,z ist. (Da partielle DGL auch noch nicht dran sind)
Jetzt habe ich versucht, den Gradienten und dann die Divergenz allgemein für so ein Polynom zu errechnen, mit der gesuchten Lösung zu vergleichen und dann auf u zu schließen, allerdings scheitere ich daran, dass ich nicht wirklich weiß, wie ein Polynom in x,y,z allgemein aussieht.
Zuerst dacht ich, es wäre einfach die Summe von 3 Polynomen jeweils in x,y,z also u = [mm] \summe_{i=0}^{n} a_{i}x^{i}+b_{i}y^{i}+c_{i}z^{i} [/mm] , aber damit würde div(grad U) keine Multiplikation wie bei [mm] 2xy^{3} [/mm] ermöglichen.
Wär nett, wenn jemand zumindest sagen könnte ob die Grundidee richtig ist und wie so ein Polynom aussieht.
thx steele
|
|
|
|
Hallo stellscout,
> Hi,
> ich häng grad an einer Aufgabe, die auf die Lösung der
> Poisson Gleichung
> [mm]\Delta[/mm] U = [mm]2xy^{3}+y^{2}[/mm] hinausläuft.
> Als Hinweis ist gegeben, dass u ein Polynom in x,y,z ist.
> (Da partielle DGL auch noch nicht dran sind)
> Jetzt habe ich versucht, den Gradienten und dann die
> Divergenz allgemein für so ein Polynom zu errechnen, mit
> der gesuchten Lösung zu vergleichen und dann auf u zu
> schließen, allerdings scheitere ich daran, dass ich nicht
> wirklich weiß, wie ein Polynom in x,y,z allgemein
> aussieht.
> Zuerst dacht ich, es wäre einfach die Summe von 3
> Polynomen jeweils in x,y,z also u = [mm]\summe_{i=0}^{n} a_{i}x^{i}+b_{i}y^{i}+c_{i}z^{i}[/mm]
> , aber damit würde div(grad U) keine Multiplikation wie
> bei [mm]2xy^{3}[/mm] ermöglichen.
> Wär nett, wenn jemand zumindest sagen könnte ob die
> Grundidee richtig ist und wie so ein Polynom aussieht.
Die Grundidee ist richtig.
So ein Polynom sieht folgendermaßen aus:
[mm]
u\left( {x,\;y,\;z} \right)\; = \;\sum {a_{ijk} \;\left( {x\; - \;x_0 } \right)^i \;\left( {y\; - \;y_0 } \right)^j \;} \left( {z\; - \;z_0 } \right)^k [/mm]
,wobei [mm](x_{0},\;y_{0},\;z_{0})[/mm] der Punkt ist um den entwickelt wird, hier also (0,0,0).
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:54 Mo 31.10.2005 | Autor: | steelscout |
Danke, habs dadurch lösen können!
Was würd ich ohne euch machen *g*
|
|
|
|