Primzahlen, primitivwurzel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:30 So 17.12.2006 | Autor: | Mikke |
Hallo habe eine Frage zu folgender Aufgabe:
Wie kann ich mit Hilfe der Existenz einer Primitivwurzel und der Formel für eine geometrische Summe zeigen, dass gilt:
p Primzahl, k aus [mm] \IN;
[/mm]
[mm] 1^{k}+2^{k}+...+(p-1)^{k}
[/mm]
[mm] \equiv [/mm] -1 mod p,falls p-1 teilt k
[mm] \equiv [/mm] 0 mod p, sonst.
hier in diesem fall ist also eine Primitivwurzel g, eine zahl g, so dass die reste der Zahlen 0,g, [mm] g^{2},...,g^{p-2} [/mm] gleich 1,2,...,p-1 sind (reihenfolge beliebig).
man muss also nur noch beweisen dass [mm] \summe_{j=0}^{p-2} g^{jk}\equiv [/mm] -1, falls p-1 teilt k, oder [mm] \equiv [/mm] 0 sonst (mod p).
aber wie mache ich das hier, könnte zuerst auf beiden seiten mit [mm] g^k [/mm] -1 multiplizieren und dann feststellen dass diese zahl genau dann durch p teilbar ist, wenn k durch p-1 teilbar ist. aber wie zeige ich das?ist das soweit richtig?
danke schoin mal
MfG mikke
Danke schon mal.
MfG Mikke
|
|
|
|
Hallo Mikke,
> Hallo habe eine Frage zu folgender Aufgabe:
>
> Wie kann ich mit Hilfe der Existenz einer Primitivwurzel
> und der Formel für eine geometrische Summe zeigen, dass
> gilt:
>
> p Primzahl, k aus [mm]\IN;[/mm]
> [mm]1^{k}+2^{k}+...+(p-1)^{k}[/mm]
> [mm]\equiv[/mm] -1 mod p,falls p-1 teilt k
> [mm]\equiv[/mm] 0 mod p, sonst.
> hier in diesem fall ist also eine Primitivwurzel g, eine
> zahl g, so dass die reste der Zahlen 0,g, [mm]g^{2},...,g^{p-2}[/mm]
> gleich 1,2,...,p-1 sind (reihenfolge beliebig).
Nicht ganz: Ist $g$ Primitivwurzel, dann sind alle Reste [mm] $1,\ldots, [/mm] p-1$ Potenzen von $g$ (modulo p), wobei $g$ Ordnung $p-1$ hat.
Deine Summe wird also quasi "umgeordnet".
Das mit der "geometrischen Summe" geht aber nur, wenn $p-1$ $k$ nicht teilt.
Mfg
zahlenspieler
|
|
|
|