Produkt zweier Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:50 So 11.12.2011 | Autor: | plugix |
Aufgabe | Das das Produkt zweier Körper nie wieder ein Körper sein kann. |
Ich habe aus der Vorlesung die Behauptung: "Das das Produkt zweier Körper nie wieder ein Körper sein kann." und kann mit an hand der Definition eines Körpers nicht klar machen weshalb dies so ist.
Zusätzlich zum Ring muss der Körper noch für die Multiplikation eine abelsche Gruppe bilden. Da dies für den einzelnen Körper gilt, verstehe ich nicht weshalb nun warum es für das Produkt nicht gelten soll.
Wo ist der Denkfehler?
Stimmt die Behauptung überhaupt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:26 So 11.12.2011 | Autor: | Lippel |
Hallo,
> Das das Produkt zweier Körper nie wieder ein Körper sein
> kann.
> Ich habe aus der Vorlesung die Behauptung: "Das das
> Produkt zweier Körper nie wieder ein Körper sein kann."
> und kann mit an hand der Definition eines Körpers nicht
> klar machen weshalb dies so ist.
> Zusätzlich zum Ring muss der Körper noch für die
> Multiplikation eine abelsche Gruppe bilden. Da dies für
> den einzelnen Körper gilt, verstehe ich nicht weshalb nun
> warum es für das Produkt nicht gelten soll.
> Wo ist der Denkfehler?
Es müssen in einem Körper auch noch alle Elemente außer das Neutrale Element bzgl. der Addition invertierbar sein. Das gilt für Ringe i.A. nicht. Es liegt daran, dass das kartesische Produkt zweier Körper niemals ein Körper mit den komponentenweisen Verknüpfungen ist.
Sind [mm] $K\;$ [/mm] und [mm] $L\;$ [/mm] Körper so besteht das Kartesische Produkt $K [mm] \times [/mm] L$ aus Tupeln $(k,l), k [mm] \in [/mm] K, l [mm] \in [/mm] L$. Das neutrale Element der Addition ist sicher das Tupel $(0,0)$, aber zum Beispiel ist das Tupel [mm] $(0,1)\;$ [/mm] nicht invertierbar, denn dafür müsste $0 [mm] \in [/mm] K$ invertiebar sein. Damit kann $K [mm] \times [/mm] L$ kein Körper sein.
LG Lippel
|
|
|
|