Rohrlänge < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:54 Di 11.03.2008 | Autor: | Beliar |
Aufgabe | [Dateianhang nicht öffentlich] |
Es geht eigentlich nur um die Überprüfung meines Rechenweges. Ich fang mal an:Die Ebene ist ja oben schon ermittelt worden, [mm] E:x_{2}+6x_{3}=48 [/mm] (die stimmt auch)
Die Gerade fürs Rohr g:(10;10;8)+k(0;0;1) die Ebene E habe ich ja schon im Teil a ermittel und als Normalenform da,
jetzt suche ich mein k :
[mm] [\vektor{10 \\ 10 \\ 8}+k\vektor{0 \\ 0 \\ 1}-\vektor{0 \\ 0 \\8}]-\vektor{0 \\ 1 \\6}= [/mm] 0
(10*0)+(10*1)+6k=0
6k=-10
k=-1,667
diese k setze ich in meine Gerade g ein und bestimme den Richtungsvektor für die [mm] Länge:\vektor{0*1.667 \\ 1*1,667 \\6*1,667} [/mm] dann die Länge ermittel: die wäre dann 10,15 Einheiten
Mag das mal jemand überprüfen
Danke Beliar
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Hi, Beliar,
> Es geht eigentlich nur um die Überprüfung meines
> Rechenweges. Ich fang mal an:Die Ebene ist ja oben schon
> ermittelt worden, [mm]E:x_{2}+6x_{3}=48[/mm] (die stimmt auch)
> Die Gerade fürs Rohr g:(10;10;8)+k(0;0;1) die Ebene E habe
> ich ja schon im Teil a ermittel und als Normalenform da,
> jetzt suche ich mein k :
> [mm][\vektor{10 \\ 10 \\ 8}+k\vektor{0 \\ 0 \\ 1}-\vektor{0 \\ 0 \\8}]-\vektor{0 \\ 1 \\6}=[/mm] = 0
> (10*0)+(10*1)+6k=0
> 6k=-10
> k=-1,667
> diese k setze ich in meine Gerade g ein und bestimme den
> Richtungsvektor für die [mm]Länge:\vektor{0*1.667 \\ 1*1,667 \\6*1,667}[/mm]
> dann die Länge ermittel: die wäre dann 10,15 Einheiten
> Mag das mal jemand überprüfen
Ehrlich gesagt weiß ich gar nicht, ob Du nun Aufgabe a) oder b) "gelöst" hast!
Ich kann Dir nur soviel sagen, dass
- der in a) gefragte Abstand natürlich senkrecht zur Ebene E gemessen werden muss und
- [mm] \bruch{10}{\wurzel{37}} \approx [/mm] 1,644 beträgt
und
- bei b) [mm] \bruch{5}{3} \approx [/mm] 1,667 rauskommt.
Mach' was draus!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:48 Di 11.03.2008 | Autor: | Beliar |
Das ist ne alte Klausur von mir, Aufgabe a habe ich auch mit 1,64 gelöst. Jetzt versuche ich Aufgabe b zu lösen, aber ich habe da keinen Durchblick. Was ich weiss ist, das Rohr hat (10;10;8) als Ortvektor, die (0;0;1)ist mein Richtungsvektor.Gibt als Gerade (10;10;8)+k(0;0;1)
die Ebene bei Aufgabe a ermittel sieht so aus:
((x1:x2;x3)-(0;0;8))*(0;1;6)=0 habe dann g für x1-3 eingesetzt das k bestimmt aber falsch. Mit dem k, also k in g eingesetzt und den Punkt bestimmt, weiss aber nicht wo ich was falsch mache, kann auch sein das g falsch ist ich weiss es nicht
|
|
|
|
|
Hi, beliar,
> Jetzt versuche ich Aufgabe b zu lösen,
> aber ich habe da keinen Durchblick. Was ich weiss ist, das
> Rohr hat (10;10;8) als Ortvektor, die (0;0;1)ist mein
> Richtungsvektor. Gibt als Gerade (10;10;8)+k(0;0;1)
> die Ebene bei Aufgabe a ermittel sieht so aus:
> ((x1:x2;x3)-(0;0;8))*(0;1;6)=0 habe dann g für x1-3
> eingesetzt das k bestimmt aber falsch.
Naja, also [mm] k=-\bruch{5}{3} [/mm] hab' ich auch raus!
Damit ergibt sich für den "Durchstoßpunkt" des Rohres durch das Dach der Punkt D(10; 10; [mm] \bruch{19}{3})
[/mm]
Und für den Abstand dieses Punktes zur "Rohrspitze" der Wert [mm] \bruch{5}{3} \approx [/mm] 1,667.
mfG!
Zwerglein
|
|
|
|