Satz von Rouché < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:02 Di 22.04.2008 | Autor: | ck2000 |
Aufgabe | Zeigen Sie, dass alle Nullstellen des Polynoms P(z) = [mm] 3z^3+z+i [/mm] in der offenen komplexen Einhietskreisscheibe liegen.
Berechnen Sie das Integral [mm] \integral_{i - \infty }^{i +\infty }{\bruch{e^{iz}}{(3z^3 + z + i)}dz} [/mm] |
Ich kann den ersten Teil mit der Einheitskreisscheibe zeigen. Nur leider habe ich überhaupt keine Ahnung, wie ich das Integral berechnen kann. Ich bräuchte nur einen ersten Hinweis.
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:32 Di 22.04.2008 | Autor: | Marcel |
Hallo,
> Zeigen Sie, dass alle Nullstellen des Polynoms P(z) =
> [mm]3z^3+z+i[/mm] in der offenen komplexen Einhietskreisscheibe
> liegen.
> Berechnen Sie das Integral [mm]\integral_{i - \infty }^{i +\infty }{\bruch{e^{iz}}{(3z^3 + z + i)}dz}[/mm]
>
> Ich kann den ersten Teil mit der Einheitskreisscheibe
> zeigen. Nur leider habe ich überhaupt keine Ahnung, wie ich
> das Integral berechnen kann. Ich bräuchte nur einen ersten
> Hinweis.
ich habe mir da jetzt, ehrlich gesagt, keine großen Gedanken zu gemacht. Da Du ja aber auch nur Hinweise willst, hoffe ich, es ist okay, wenn ich einfach mal ein paar Stichworte in den Raum werfe:
http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf
Als erstes hätte ich hier die Idee:
Satz 33.3: Residuensatz
Und wenn Du mal in den Beweis zu Satz 33.7 reinguckst:
Vll. kann man das dortige "Beweiskonzept" in analoger Form auf Deine Aufgabe übertragen.
Vll. klappt es sogar, den Satz 33.7 hier anzuwenden, wenn man oben geeignet substituiert.
Wie gesagt: Im Prinzip habe ich mir zu der Aufgabe oben noch gar keine Gedanken gemacht, das waren jetzt mehr oder weniger einfach "Stichworte", die mir beim Betrachten Deines Integrals eingefallen sind. Ansonsten kannst Du ja auch mal im obigen Skript, insbesondere in Kapitel 33, ein wenig "rumstöbern", vll. springt Dir ja was ins Auge
Gruß,
Marcel
|
|
|
|