Selbstadj.Operator (Eigenvek.) < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeige: Für einen selbstadj. beschränkten Operator in einem Hilbertraum H gilt:
Zu verschiedenen Eigenwerten von T gehörende Eigenvektoren stehen aufeinander senkrecht. |
Bin da ziemlich ratlos.
Habe versucht mit zwei Eigenwerten [mm] \lamba_{1} [/mm] und [mm] \lambda_{2} [/mm] zu starten und [mm] T(x_{i})=\lambda_{i}*x_{i} [/mm] nach den [mm] x_{i} [/mm] umzustellen und in ein Skalarprodukt zu packen.
Also < [mm] x_{1},x_{2} [/mm] > = < [mm] \bruch{T(x_{1})}{\lambda_{1}},\bruch{T(x_{2})}{\lambda_{2}} [/mm] >
An der Stelle (wenn das nicht schon vom Ansatz total daneben ist) hörts dann auch schon auf. Kann man da durch die Selbstadjungiertheit noch was rausholen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:50 Mo 23.01.2006 | Autor: | Hanno |
Hallo Steelscout.
Es seien [mm] $v_0,v_1\in [/mm] V$ verschiedene Eigenvektoren zu den Eigenwerten [mm] $\lambda_0,\lambda_1\in\IK$ [/mm] von $T$. Es gilt also [mm] $Tv_0=\lambda_0 v_0, Tv_1 [/mm] = [mm] \lambda_1 v_1$.
[/mm]
Weiter ist $T$ selbstadjungiert, d.h. wir haben [mm] $\langle Tw,u\rangle [/mm] = [mm] \langle w,Tu\rangle$ [/mm] für alle [mm] $w,u\in [/mm] V$.
Diese Gleichung musst du nun auf [mm] $v_0$ [/mm] und [mm] $v_1$ [/mm] anwenden.
Liebe Grüße,
Hanno
|
|
|
|
|
Sorry, ich seh's einfach nicht.
Was bringt mir das Einsetzen?
Dann hab ich [mm] <\lambda_{0}*v_{0},v_{1}> [/mm] = < [mm] T(v_{0}),v_{1}> [/mm] = < [mm] v_{0},T(v_{1})> [/mm] = [mm] [/mm] , aber woraus soll ich denn bei einem allg. Skalarprodukt und unbekannten Eigenvektoren sehen, dass das 0 ist?
Da fehlt mir irgendwie die Schlussfolgerung, auf die das hinauslaufen soll :(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:43 Mo 23.01.2006 | Autor: | Hanno |
Hallo!
> Dann hab ich $ [mm] <\lambda_{0}\cdot{}v_{0},v_{1}> [/mm] $ = < $ [mm] T(v_{0}),v_{1}> [/mm] $ = < $ [mm] v_{0},T(v_{1})> [/mm] $ = $ [mm] [/mm] $ , aber woraus soll ich denn bei einem allg. Skalarprodukt und unbekannten Eigenvektoren sehen, dass das 0 ist?
Na, das sieht doch schonmal sehr gut aus!
Es gilt also [mm] $\langle\lambda_0 v_0,v_1\rangle [/mm] = [mm] \langle v_0,\lambda_1 v_1\rangle$. [/mm] Ein Skalarprodukt ist eine bilineare Abbildung, d.h. wir haben [mm] $\langle \lambda_0 v_0,v_1\rangle [/mm] = [mm] \lambda_0\langle v_0,v_1\rangle$ [/mm] und [mm] $\langle v_0,\lambda_1 v_1\rangle [/mm] = [mm] \lambda_1\langle v_0,v_1\rangle$. [/mm] Setzen wir dies in die bereits bewiesene Gleichung [mm] $\langle\lambda_0 v_0,v_1\rangle [/mm] = [mm] \langle v_0,\lambda_1 v_1\rangle$ [/mm] ein, ergibt sich also [mm] $\lambda_0 \langlev_0,v_1\rangle [/mm] = [mm] \lambda_1 \langle v_0,v_1\rangle$. [/mm] So, und nun bist du wieder dran. Wie geht es weiter? Wir wissen: [mm] $\lambda_0\neq\lamba_1$. [/mm] Zu zeigen ist: [mm] $\langle v_0,v_1\rangle [/mm] = 0$.
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:27 Mo 23.01.2006 | Autor: | steelscout |
siehe betreff :)
|
|
|
|