Stetigkeit und Höhenlinien < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:40 Mi 12.11.2008 | Autor: | xcase |
Aufgabe | Wir betrachten die Funktion [mm] f:\IR^{2} \to \IR [/mm] mit
[mm] f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \\ 0, & \mbox{für } sonst \end{cases} [/mm] .
Skizzieren sie die Höhenlinien der Funktion. Ist die Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die Höhenlinien?
Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher die Gleichung f(x,y)=c zunächst in die Form [mm] (x-x_{0})^{2}+(y-y_{0})^{2} [/mm] = [mm] r^{2} [/mm] dar. Die Zahlen [mm] x_{0}, y_{0} [/mm] und r hängen dabei von c ab. |
Hallo,
also zur stetigkeit....ich habe versucht ein gegenbeispiel zu finden das e nicht stetig ist aber nichts gefunden...dann habe ich vermutet das die Funktion im Punkt (0,0) stetig ist. Hab mir also die Folge [mm] x_{k} [/mm] = [mm] (x_{k},y_{k}) [/mm] genommen und natürlich gesagt das beide Folgeglieder eine Nullfolge sind!
Dann habe ich die Folge mal in die Funktion eingesetzt und ich komme jetzt nicht weiter [mm] bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}} [/mm] + [mm] y_{k} [/mm] . Bin ich auf dem richtigen Weg oder gibt es da doch ein Gegenbeispiel? Weil ich kann ja nicht die einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0 im zähler und im nenner steht oder?
Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich weiss nicht wie ich die paramater in abhängikkeit von c darstellen soll.
Brauche einen kleinen Denkanstoss^^
Danke für die Hilfe
MfG Tomi
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:08 Mi 12.11.2008 | Autor: | abakus |
> Wir betrachten die Funktion [mm]f:\IR^{2} \to \IR[/mm] mit
> [mm]f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \mbox{ gerade} \\ 0, & \mbox{für } sonst \mbox{ ungerade} \end{cases}[/mm]
> .
Hallo,
ich verstehe die Aufgabenstellung nicht. Die Begriffe "gerade" und "ungerade" machen nur Sinn für ganze Zahlen.
Wann soll eine reelle Zahl gerade sein?
Gruß Abakus
> Skizzieren sie die Höhenlinien der Funktion. Ist die
> Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die
> Höhenlinien?
> Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher
> die Gleichung f(x,y)=c zunächst in die Form
> [mm](x-x_{0})^{2}+(y-y_{0})^{2}[/mm] = [mm]r^{2}[/mm] dar. Die Zahlen [mm]x_{0}, y_{0}[/mm]
> und r hängen dabei von c ab.
> Hallo,
> also zur stetigkeit....ich habe versucht ein gegenbeispiel
> zu finden das e nicht stetig ist aber nichts
> gefunden...dann habe ich vermutet das die Funktion im Punkt
> (0,0) stetig ist. Hab mir also die Folge [mm]x_{k}[/mm] =
> [mm](x_{k},y_{k})[/mm] genommen und natürlich gesagt das beide
> Folgeglieder eine Nullfolge sind!
> Dann habe ich die Folge mal in die Funktion eingesetzt und
> ich komme jetzt nicht weiter
> [mm]bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}}[/mm]
> + [mm]y_{k}[/mm] . Bin ich auf dem richtigen Weg oder gibt es da
> doch ein Gegenbeispiel? Weil ich kann ja nicht die
> einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0
> im zähler und im nenner steht oder?
>
> Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich
> weiss nicht wie ich die paramater in abhängikkeit von c
> darstellen soll.
> Brauche einen kleinen Denkanstoss^^
> Danke für die Hilfe
>
> MfG Tomi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:21 Mi 12.11.2008 | Autor: | xcase |
oh sry.....wurde jetzt nochmal editiert die fragestellung :X
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:24 Do 13.11.2008 | Autor: | fred97 |
> Wir betrachten die Funktion [mm]f:\IR^{2} \to \IR[/mm] mit
> [mm]f(x,y)=\begin{cases} \bruch{x^{2}+y^{2}}{y}, & \mbox{für } y\not=0 \\ 0, & \mbox{für } sonst \end{cases}[/mm]
> .
> Skizzieren sie die Höhenlinien der Funktion. Ist die
> Funktion stetig im Punkt (0,0)? Welchen Hinweis geben die
> Höhenlinien?
> Hinweis: Die Höhenlinien sind Kreise. Stellen sie daher
> die Gleichung f(x,y)=c zunächst in die Form
> [mm](x-x_{0})^{2}+(y-y_{0})^{2}[/mm] = [mm]r^{2}[/mm] dar. Die Zahlen [mm]x_{0}, y_{0}[/mm]
> und r hängen dabei von c ab.
> Hallo,
> also zur stetigkeit....ich habe versucht ein gegenbeispiel
> zu finden das e nicht stetig ist aber nichts
> gefunden...dann habe ich vermutet das die Funktion im Punkt
> (0,0) stetig ist. Hab mir also die Folge [mm]x_{k}[/mm] =
> [mm](x_{k},y_{k})[/mm] genommen und natürlich gesagt das beide
> Folgeglieder eine Nullfolge sind!
> Dann habe ich die Folge mal in die Funktion eingesetzt und
> ich komme jetzt nicht weiter
> [mm]bei....\limes_{k\rightarrow\infty} \bruch{x_{k}^{2}}{y_{k}}[/mm]
> + [mm]y_{k}[/mm] . Bin ich auf dem richtigen Weg oder gibt es da
> doch ein Gegenbeispiel? Weil ich kann ja nicht die
> einzelnen Folgen gegen 0 konvergieren lassen da dann eine 0
> im zähler und im nenner steht oder?
Nimm Polarkoordinaten x = rcost, y = rsint , wobei r = [mm] \wurzel{x^2+y^2}.
[/mm]
Dann siehst Du ganz einfach, dass f in (0,0) stetig ist
>
> Zu den Höhenlinien finde ich irgendwie keinen ansatz....ich
> weiss nicht wie ich die paramater in abhängikkeit von c
> darstellen soll.
> Brauche einen kleinen Denkanstoss^^
Quadratische Ergänzung !
f(x,y) = c [mm] \gdw x^2+y^2 [/mm] -cy = 0 [mm] \gdw x^2+y^2 [/mm] -cy [mm] +c^2/4 [/mm] = [mm] c^2/4 \gdw x^2+(y-c/2)^2 [/mm] = [mm] c^2/4
[/mm]
FRED
> Danke für die Hilfe
>
> MfG Tomi
|
|
|
|